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Computing maximum proportion and most violated sets  
 

M. Ghiyasvand1* 
 

In Fisher's and Arrow-Debreu's market equilibrium models with linear utilities, a set 𝐵 of buyers 

and a set 𝐺 of divisible goods, suppose that there are some buyers with surplus money w.r.t current 

prices of goods. If there does not exists an equilibrium, then, there are some buyers with surplus 

money w.r.t the given prices. A set of buyers with surplus money called a violated set. Computing 

this set helps to find the set of buyers with maximum surplus money w.r.t the given prices.  In 

this paper, two new kinds of violated sets are defined, which called maximum proportion and most 

violated sets. We present an algorithm to compute a maximum proportion set, which runs in at most 

|𝐵| maximum flow computations. Also, we show that the set of all buyers 𝐵 is a most violated set. 
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1. Introduction 

 

Fisher's and Arrow-Debreu's market equilibrium models are the two fundamental models within 

mathematical economics. In the both model, the purpose is to compute an equilibrium.  In 1954, 

Arrow and Debreu [1] proved that the market equilibrium always exists if the utility functions are 

concave. The result is prominently mentioned in their Nobel prize laudation and the market is usually 

referred to as the Arrow-Debreu market, which considers a more general model in which each buyer 

𝑖 starts with an initial endowment },..,,{ 21 Giii eee of goods, where ije is the initial proportion of good

j  possessed by buyer 𝑖. If P is a vector of prices for the goods, then the value of the goods for buyer 

𝑖 is 



Gj

jiji pePe .)(  The first polynomial time algorithm for the linear Arrow-Debreu mode is given 

by Jain [15], it is based on solving a convex program using the ellipsoid algorithm. Another 

polynomial-time algorithm was given by Ye [19], it is based on solving a convex program using the 

interior-point method. The algorithm in [19] runs in )( 4LnO  time, where GBn   and L is the 

bit-length of the input data iju (which iju is the utility of buyer i purchasing all of good j ). 

       Jain, Mahdian and Saberi [16] considered approximate utility maximization and gave a 

combinatorial method to compute an  -approximate solution, which runs in )/1( O   calls of the 

algorithm in [4]. Devanur and Vazirani[6] improved the running time to )./log)/(( 7  nnO  This 

running time avoids dependence on the size of the integers in the problem instance. Garg and Kapoor 

[9] relaxed the definition of approximation by permitting purchases to violate their optimality 

conditions by  .  Under this revised notion of approximation, they developed an 

)/log)/(( 3  nnO  time algorithm. Ghiyasvand and Orlin [13] developed an approximation 

algorithm that runs in )/( 3 nO  time using a new definition of approximation. Duan and Mulhern[7] 
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presented the first combinatorial polynomial time algorithm for computing the equilibrium of the 

Arrow-Debreu market model with linear utilities. Devanur et al. [5] presented a rational convex 

program for linear Arrow-Debreu markets. Finally, Garg and Vazirani [11] obtained a linear 

complementarity problem formulation that captures exactly the set of equilibria for Arrow-Debreu 

markets with SPLC utilities and SPLC production, and gave a complementary pivot algorithm for 

finding an equilibrium. Some new results of the market problems presented by [2,4,8,10,14]. 

       In Fisher'model [3], all initial endowments are in dollars: each buyer i  has a fixed amount of 

money ie  and it does not change by increasing or decreasing the prices. Devanur et al. [5] gave the 

first polynomial time algorithm for computing an equilibrium, using 

))loglog(log( max

4 MUnnnO   max-flow computations, where M  depends on the 

endowments and maxU is the maximum utility. Finally, Orlin [17] developed the first strongly 

polynomial time algorithm for finding the market equilibrium, which runs in )log( 4 nnO  time. 

        Consider a market consisting a set B of buyers and a set G of divisible goods. We are given for 

each buyer i  the amount ie of money she possesses and for each good j one unit of good. Let iju

denote the utility derived by i on obtaining a unit amount of good .j   Let ),...,,( ||21 GpppP  denote 

a vector of prices. If at these prices’ buyer i is given good ,j  she derives iij pu /  amount of utility 

per unit amount of money spent. Define 

.max
j

ij

Gj
i

p

u


  

Clearly buyer i will be happiest with goods that maximize jij pu / . This motivates defining a bipartite 

graph ),,( BGD  which for each Bi and ,Gj  edge ),( ji is in D iff ./ jiji pu  Direct edge 

of D from G to B and assign a capacity of infinity to all these edges. Introduce source vertex ,s sink 

vertex ,t a directed edge from s to each vertex ,Gj with a capacity of ,jp  and a directed edge from 

each vertex Bi  to t  with a capacity of .ie This network is clearly a function of the current prices

P and defined by ).(PN  An equilibrium is obtained w.r.t. the prices P iff })({s and )}({ BGs 

are two min-cuts in ).(PN  On the other hand, an equilibrium is obtained w.r.t prices P iff the 

following conditions are satisfied.   

 

Condition-1: There exists a maximum flow x from node s to node t such that ,isi px  for each 

.Gi  
Condition-2: There exists a maximum flow x from node s to node t such that ,jjt ex  for each 

.Bj  

 

Supposing that Condition-1 is satisfied, but Condition-2 is not. Thus, there are some buyers with 

surplus money w.r.t the current prices .P  For satisfying Condition-2, we should increase the prices.  

Ghiyasvand [12] called a set of buyers with surplus money as a violated set and  defined a kind of 

violated sets called maximum mean, then computed a maximum mean violated set in 

))/log(( 2 mnmnO , where m is the number of pairs ),( ji such that buyer i  has some utility for 

purchasing good .j  

      This paper defines two new kinds of violated sets, which are maximum proportion and most 

violated sets. Then, an algorithm to compute a maximum proportion set is presented, which runs in 
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at most B maximum flow computations. Finally, we show that the set of all buyers B is a most 

violated set. Computing a maximum mean, most violated, or maximum proportion set help to know 

the set of buyers with maximum surplus money w.r.t the current prices .P  

       This paper consists of four sections in addition to Introduction section. Section 2 defines the most 

violated and maximum proportion sets. In Section 3, a maximum proportion set is computed in B

maximum flow computations. Section 4 shows that the set of all buyers B is a most violated set. 

 

2. Violated sets 

 

 A directed graph 𝐷  is a pair 𝐷 = (𝑁, 𝐴) where 𝑁 is a set of nodes and 𝐴 is a set of ordered pairs of 

nodes, called arcs. We denote an arc from node 𝑖 to node 𝑗 by (𝑖, 𝑗) and also associate with each arc 

 a capacity ijc  that denotes the maximum amount that can flow on the arc.  If two sets S and S form 

a nontrivial partition of N  then, we define  ,,|),()( SjSiAjiScut   where .SNS    

We refer to a cut as ts  cut if Ss  and St . The capacity of )(Scut is defined as:   

                                                                               .)(
),(),(





SSji

ijcSK                                                              (1) 

An ts  cut whose capacity is minimum among all ts  cuts is called a minimum cut. 

Theorem 2.1 (Max-flow min-cut theorem). The maximum value of the flow from a source node s to 

a sink node t  in a capacitated network equals the minimum capacity among all ts   cuts.     

For each BT  , define its money .)( 



Tj

jeTm  Also, w.r.t prices ,P define  ,)( 



Si

ipSm for 

each .GS   For BT  and ,GS    define its neighborhood in )(PN  by 

)},(),(,|{)( PNjiTjGiT   

 and  

)}.(),(,|{)( PNjiSiBjS   

Lemma 2.1 (Ghiyasvand[12]). For given prices P in ),(PN there exists a maximum flow x from node 

s to node t  such that ,jjt ex   for each Bj   if and only if 

for each :BT     ).())(( TmTm      

For given prices P and each set ,BT   we define the value of set T  by 

)).(()()( TmTmTV P   
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If Condition-1 is satisfied, then, by Lemma 2.1, an equilibrium is obtained w.r.t. prices P if and only 

if for every set :BT   

.0)( TV P  

A set BT   is called a violated set if .0)( TV P  If Condition-1 is satisfied but an equilibrium is 

not obtained w.r.t prices ,P then Lemma 2.1 says that there are some violated sets in ),(PN w.r.t. 

the current prices .P  The mean value of set T  is defined by 

,
||

)(
)(

T

TV
TV

P
P

  

and a maximum mean set is computed by  

).(* TVMaxT
P

BT
  

This paper defines two new kinds of violated sets.  We call the proportion of a set T  by  

,
))((

)(
)(

Tm

Tm
T


  

and a maximum proportion set Z is defined by 

).()( TMaxZ
BT



 

Also, BT *~
 is a most violated set w.r.t prices P if  

).()
~

( * TVMaxTV P

BT

P


  

By Lemma 2.1, if the Condition-1 is satisfied, an equilibrium is obtained w.r.t. prices P if and only 

if  

(1)  For every set BT  :  ,0)( TV
P

 or 

(2)  For every set BT  : ,0)( TV P
 or  

(3)  For every set BT  :  .1)(  T  

 

Example 2.1. In Figure 1, consider two sets }3,2,1{1 T  and }.4,3{2 T  We have },,{)( 1 baT   

,1802060100)( 1 Tm  and ,60))(( 1  Tm  so 

.40
||

))(()(
)(

1

11
1 




T

TmTm
TV

P
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Figure 1. A network )(PN  with },,,,{ dcbaG  ,20ap ,40bp ,10cp ,30dp  

},4,3,2,1{B  ,1001 e  ,602 e ,203 e and .1404 e  

Also, by },,,{)( 2 dcbT  ,16014020)( 2 Tm and ,80301040))(( 2  Tm we get 

.40
||

))(()(
)(

2

22
2 




T

TmTm
TV

P

 

Hence, 

),()( 21 TVTV
PP

  

which means sets 
1T and 2T  have no difference with respect to the definition of the mean value for 

violated sets. The proportion of sets 
1T and 2T are 

,3
60

180

))((

)(
)(

1

1
1 




Tm

Tm
T  

And 

.2
80

160

))((

)(
)(

2

2
2 




Tm

Tm
T  

Thus, the sets 
1T and 2T are different with respect to the definition of the proportion for violated sets.  

By definitions, ))(( Tm  is the maximum amount of money spent by the buyers of T with respect 

to the current prices .P  Hence, 3)( 1  T  means that the maximum amount of money spent by the 

buyers of 1T is 3/1  of their money, i.e. 

).(
3

1
))(( 11 TmTm   

Also, by ,3)( 2  T  the maximum amount of money spent by the buyers of 2T is 3/1 of their money, 

which means 

).(
2

1
))(( 22 TmTm   
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3. Computing a maximum proportion set  
 

In this section, an algorithm to compute a maximum proportion set is presented. If 1)(  Z  then, by 

Lemma 2.1, BGs }{  is a minimum cut in ).(PN  Supposing that we multiply prices of all goods 

in G  by ,0 then the network )(PN changes to ).( PN   

Lemma 3.1. If ),(Z  then, for every maximum flow x from node s to node t in network ),( PN   

we have ,jjt ex   for each .Bj  Also, for ),(Z such a maximum flow does not exist.     

Proof.  By the definition of a maximum proportion set ,Z we get  

)(Z  if and only if  ,
))((

)(

Tm

Tm


  

for each set .T  Hence, by Lemma 2.1, we conclude the claims.     

Definition 3.1. Supposing that, for each maximum flow x from node s to node t in ),( PN   there 

exists at least one node Bj such that .jjt ex    Let ,ˆ
1BZZ  1)ˆ( GZH  and  

,ˆ~
ZZZ   where 

11}{ BGs   is a min-cut in ).( PN   Figure 2 shows the sets ,Ẑ ,H  ,
~
Z ,1B

,2B 1G  and ,2G  where 
12 GGG   and .12 BBB   

 

                                        Figure 2. The sets ,Ẑ ,H  ,
~
Z ,1B ,2B 1G  and .2G  

The following lemma presents two properties of these sets. 

Lemma 3.2. Supposing that, for each maximum flow x  from node s to node t in ),( PN   there 

exists at least one node Bj such that .jjt ex   Let 11}{ BGs   be a minimum cut in ).( PN   If 

Ẑ  is not empty, then  

  (a)  ).()ˆ( HmZm   

  (b)   .ẐZ   

 Proof.   

(a)  By Figure 2, 
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             ),ˆ()()()())ˆ()(}({ 1211 ZmBmHmGmZBHGsK                        (2) 

and 

                                         ).()()}({ 1211 BmGmBGsK                                                          (3) 

If ),()ˆ( HmZm   then, by (2) and (3), 

),}({))ˆ()(}({ 1111 BGsKZBHGsK   

which is a contradiction with the minimality of cut .}{ 11 BGs   

(b) By Lemma 3.1 and the assumption of this lemma, we get ).(Z  On the other hand, by 

),(ZH    we have  

).())(()()()( ZmZmZHmZ   

Hence  ),()( ZmHm   which means by (a), .ẐZ         

Lemma 3.3.  If, for each maximum flow x  from node s to node t in ),( PN   there exists at least 

one node Bj such that ,jjt ex   then .2BZ   

Proof.  Supposing that for the sake of contradiction, the set Z  does not belong to the set ,2B  which 

means, by Figure 2, the set Ẑ  is not empty. Thus, by Lemma 3.2(b), we have ,ẐZ   so, the set Ẑ

is not empty. By Lemma 3.1 and the assumption, we have ),(Z  so, by Lemma 3.2(a), 

                                                                      ).()()ˆ( HmZZm                                                              (4) 

By Definition 3.1, we get 1
ˆ BZZ   and .ˆ~

ZZZ   Also, 11}{ BGs  is a min-cut in ),( PN   

which means sets Ẑ and Z
~

are in different sides of the minimum cut .}{ 11 BGs   Hence, we get 

.)
~

(  HZ  Consequently, by the definitions,  we have ),()
~

( ZHZ   which means 

                                                             )).(()())
~

(( ZmHmZm                                                        (5) 

On the other hand, by Figure 2 and the definition of )(Z , we have  

.
)(

)ˆ()
~

(
))((

Z

ZmZm
Zm




  

Thus, by (5),  

),
~

()ˆ()()())
~

(()( ZmZmHmZZmZ   

which means, by (4), 
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),
~

())
~

(()( ZmZmZ   

contradicting the definition of  ).(Z       

Lemma 3.4.  Supposing that, for each maximum flow x  from node s to node t in ),( PN   there exists 

at least one node Bj  such that ,jjt ex   where .
)(

)(

Gm

Bm
  Then, for each minimum cut

11}{ BGs   in ),( PN   we have  

   (a) ).}({})({ 11 BGsKsK   

   (b) .2BB     

Proof.  

 (a)  By (1) and Figure 2, we get 

),(})({ GmsK   

 and 

).()}({ BmBGsK   

 Thus, by 
)(

)(

Gm

Bm
 , Claim (a) is true.  

 (b) If ,2BB   then 
1B  is empty, which means, by ),( 11 GB   the set 

1G  is empty. Thus, 

}{}{ 11 sBGs  is a minimum cut in ).( PN   Hence, by Part (a), BGs }{  is a minimum 

cut, so, there exists a maximum flow x  from node s to node t in )( PN  such that ,jjt ex   for each

,Bj  which is a contradiction.     

Algorithm 3.1 computes a maximum proportion set. The next theorem proves this claim and computes 

its running time.  

Theorem 3.1. 

   (a) At the end of Algorithm 3.1, a maximum proportion set is computed.  

   (b) The complexity of Algorithm 3.1 is at most B  maximum flow computations.  

Proof.  By Lemma 3.3 and Lemma 3.4, after at most B iterations, we have a maximum flow x  from 

node s to node t in )( PN  such that ,jjt ex   for each .Bj  On the other hand, in each iteration, 

we have 

).(
)(

)(

2

2 Z
Gm

Bm
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Thus, by Lemma 3.1 after at most B iterations, we get ).(Z  In each iteration, the algorithm 

computes a maximum flow.        

 

Algorithm 3.1. 

Input:  A bipartite graph ).,( BGD    

Output:  A maximum proportion set .Z  

Begin  

     Form network ),( PN  where );(/)( GmBm  

     Compute a maximum flow x  from node s to node t in );( PN   

     While there exists a Bj  such that jjt ex   do 

     Begin  

          Compute a minimum cut 
11}{ BGs   in );( PN   

          Let 
12 BBB  and ;12 GGG   

          Let 2BB  , 2GG  and );(/)( 22 GmBm  

          Compute a maximum flow x  from node s to node t in );( PN   

     End; 

End. 

Algorithm 3.1. Computing a maximum proportion set.   

 Orlin [18] presented an algorithm to solve the maximum flow problem, which runs in )(mnO  

time. Consequently, by Theorem 3.1, a maximum proportion set is computed in )( mnBO  time 

using Orlin's algorithm in each iteration of Algorithm 3.1. 

 

4. Computing a most violated set 
 

In this section, we show if Condition-1 is satisfied, then, the set B is a most violated set. For it, we 

define the network )(PH in a similar way of the definition of )(PN .  Direct edges from B toG and 

assign a capacity of infinity to all these edges. Introduce source vertex s and a directed edge from s
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to each Bi with a capacity of .ie  Introduce sink node t and a directed edge from each vertex 

Gj  to t with a capacity of jp  (Figure 3 shows the network ))(PH . 

 

Figure 3. The network ).(PH  

Lemma 4.1.  If )(}{ TTs  is an ts  minimum cut in ),(PH  then, the set T is a most violated 

set in ).(PN  

Proof.  All nodes of )(T are in the s side of the ts   min cut, because each edge from B  to G has 

a capacity of infinity. Be the definitions, we have 

)),(()())(}({ TmTBmTTsK   

or 

))).(()(()())(}({ TmTmBmTTsK   

Thus, minimizing the capacity of the cut )(}{ TTs   is equivalent to maximizing 

)).(()( TmTm        

Theorem 4.1.  If Condition-1 is satisfied, then, the set B is a most violated set.  

Proof.  Assume set T is a most violated set such that set T is a strict subset of .B  Condition-1 is 

satisfied, so 

                                                              )).(()( TmGmTBm                                                                (6) 

In the network ),(PH the capacity of cut )(}{ GBs   is:  

))()(()()()}({ GmBmBmGmGBsK   

))(()(()( TmTmBm  ))).(()( GGmTBm   

Hence, by (6), we get  

))(()(()()}({ TmTmBmGBsK  )).(}({ TTsK   

which means, by Lemma 4.1, the set B  is a most violated set.      

5. Conclusion 
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Given Fisher's and Arrow-Debreu's market equilibrium models with linear utilities, a set of buyers 

and a set of divisible goods, suppose that there are some buyers with surplus money w.r.t current 

prices of goods. Ghiyasvand (2012) called a set of buyers with surplus money as a violated set and 

computed a kind of violated set called maximum mean set. This paper presented two new kinds of 

violated sets, which called maximum proportion and most violated sets. An algorithm to compute a 

maximum proportion set was presented, which runs in at most B maximum flow computations. Also, 

we showed that the set of all buyers B is a most violated set computation. 
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