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Option valuation has been a challenging issue of financial engineering and optimization for a long 

time. The increasing complexity of market conditions requires utilization of advanced models that, 

commonly, do not lead to closed-form solutions. Development of novel numerical procedures, 

which prove to be efficient within various option valuation problems, is therefore worthwhile. 

Notwithstanding, such novel approaches should be tested as well, the most natural way being to 

assume simple plain vanilla options under the Black and Scholes model first; because of its 

simplicity the analytical solution is available and the convergence of novel numerical approaches 

can be analyzed easily. Here, we present the methodological concepts of two relatively modern 

numerical techniques, i.e., discontinuous Galerkin and fuzzy transform approaches, and compare 

their performance with the standard finite difference scheme in the case of sensitivity calculation 

(a so-called Greeks) of plain vanilla option price under Black and Scholes model conditions. The 

results show some interesting properties of the proposed methods. 
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1. Introduction 

 

Valuation of options, a specific nonlinear type of financial derivatives playing an important role 

in economics, has been a challenging issue of financial engineering and optimization for a long time. 

The standard ways to option valuation, as well as replication and hedging, date back to the 70's with 

the seminal papers of Black and Scholes [1] and Merton [19], Cox et al. [5] and Boyle [2]. While 

Black and Scholes [1] and Merton [19] derived their respective models within continuous time by 

solving partial differential equations (and thereafter called Black–Scholes–Merton partial differential 

equations) for riskless portfolio consisting of option itself and its underlying asset, Cox et al. [5] 

provided an approximate solution in a two-stage discrete time setting via recursive backward 

procedure. Alternatively, Boyle [2] suggested that in order to obtain the (discounted) expectation of 

the option payoff function the Monte Carlo simulation technique can be useful, i.e., instead of riskless 

portfolio construction and utilization of no-arbitrage principles the risk neutral behavior of all agents 
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is assumed. It is a well-known result of quantitative finance (see, e.g., Duffie [6]) that these 

approaches are equivalent under the assumption of complete markets, or, at least, when an equivalent 

martingale measure exists. Although the aforementioned approaches slightly differ in details, for 

example, only the model of Cox et al. [5] can be used for valuation of American options, they all 

should lead to identical prices under equivalent circumstances.  

 

Notwithstanding, the increasing complexity of market conditions requires utilization of advanced 

models that, commonly, do not lead to closed-form solutions. Thus, in real applications we often need 

to work with advanced processes or complex payoff functions and simple valuation procedures are 

no longer efficient and development of novel methods or numerical procedures, which prove to be 

efficient within various option valuation problems, is therefore worthwhile. Notwithstanding, such 

novel approaches should be tested as well, the most natural way being to assume simple plain vanilla 

options under the Black and Scholes model first; because of its simplicity the analytical solution is 

available and the convergence of novel numerical approaches can be analyzed easily.  

 

Here, we focus on two novel numerical techniques (discontinuous Galerkin method and fuzzy 

transform approach) and propose their usage in numerical solution of complex option valuation 

problems. Obviously, in order to evaluate their performance, only a simple problem based on 

numerical approximation of the Black–Scholes–Merton partial differential equations accompanied 

by boundary and terminal conditions of plain vanilla options is assumed. 

 

After reviewing some basic concepts about option pricing in Section 2, we present the 

methodological concepts of two relatively modern numerical techniques (Section 3), i.e., 

discontinuous Galerkin and fuzzy transform approaches, and compare their performance with the 

standard finite difference scheme in the case of sensitivity calculation (a so-called Greeks) of plain 

vanilla option price under Black and Scholes model conditions (Section 4). The results show some 

interesting properties of the proposed methods. We conclude in Section 5. 

 

2. Option Valuation and Sensitivity Calculation  
 

Options are nonlinear types of financial derivatives, which give the holder the right (but not the 

obligation) to buy the underlying asset in future (at maturity time) at a prespecified exercise price. 

Simultaneously, the writer of the option has to deliver the underlying asset if the holder asks. 

Therefore, the valuation is quite challenging. 

 

The standard market model proposed independently by Black and Scholes [1] and Merton [19] is 

valid, in its basic form, only under idealized market conditions, including perfect market with the 

underlying asset price following log-normal distribution without any dividends and its returns having 

constant volatility, i.e., assuming fixed maturity 𝑇, the underlying asset price 𝑆 = 𝑆(𝑡) follows 

geometric Brownian motion 

 

d𝑆(𝑡) = 𝜇𝑆(𝑡)d𝑡 + 𝜎𝑆(𝑡)d𝑍(𝑡), (1) 

 

where 𝑍 = 𝑍(𝑡) is the standard Brownian motion (i.e., the Wiener process), 𝜇 is constant drift (long 

term return) and 𝜎 represents the volatility (standard deviation) of the underlying asset price returns. 

 

Since the option value function 𝑉(𝑆, 𝑡) depends solely on time and the underlying asset price, the 

increments d𝑉(𝑆, 𝑡) can be specified as follows: 
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d𝑉(𝑆, 𝑡) = (
𝜕𝑉(𝑆, 𝑡)

𝜕𝑡
+ 𝜇𝑆

𝜕𝑉(𝑆, 𝑡)

𝜕𝑆
+

1

2
𝜎2𝑆2

𝜕2𝑉(𝑆, 𝑡)

𝜕𝑆2 ) d𝑡 + 𝜎𝑆
𝜕𝑉(𝑆, 𝑡)

𝜕𝑆
d𝑍. (2) 

 

Clearly, the sensitivity of the option price 𝑉 to the change of the underlying asset price 𝑆 consists of 

the time increment d𝑡 and the standard normal variable change d𝑍. 

 

Since both 𝑉 and 𝑆 depend on the same source of uncertainty d𝑍, it might be feasible to construct 

a riskless portfolio of option 𝑉 and −Δ =
𝜕𝑉(𝑆,𝑡)

𝜕𝑆
 shares of the underlying asset 𝑆. From that, we can 

derive a Black–Scholes–Merton partial differential equation (BSM PDE) for pricing the European 

option contracts on a single asset: 

 

𝜕𝑉

𝜕𝑡
+

1

2
𝜎2𝑆2

𝜕2𝑉

𝜕𝑆2
+ 𝑟𝑆

𝜕𝑉

𝜕𝑆
− 𝑟𝑉 = 0, (3) 

 

for 𝑆 > 0 and 𝑡 > 0. 

 

Such an equation is valid for any option under given constraints. However, a particular solution 

depends on exact features of the option, i.e., on the payoff function which determines the option value 

at maturity 𝑇. This terminal condition in the case of vanilla options has the form 

 

𝑉(𝑆, 𝑇) = {
max(𝑆 − 𝒦, 0),  (call)

max(𝒦 − 𝑆, 0),  (put)
 (4) 

 

where 𝒦 denotes the strike price, i.e., the specified price at which an option contract can be exercised. 

 

The pricing equation (3) equipped with one of the terminal conditions (4) constitutes the Cauchy 

problem in (𝑆, 𝑡)-domain whose analytical solutions are given by the Black–Scholes formula as 

 

𝑉(𝑆, 𝑡; 𝜎, 𝑟, 𝒦, 𝑇) = {
𝑆Φ(𝑑1) − 𝒦𝑒−𝑟(𝑇−𝑡)Φ(𝑑2),                for a call,

𝒦𝑒−𝑟(𝑇−𝑡)Φ(−𝑑2) − 𝑆Φ(−𝑑1), for a put,
 (5) 

 

where   

 

𝑑1 =
ln(𝑆/𝒦) + (𝑟 + 𝜎2/2 ) (𝑇 − 𝑡)

𝜎√𝑇 − 𝑡
,     𝑑2 =

ln(𝑆/𝒦) + (𝑟 − 𝜎2/2 ) (𝑇 − 𝑡)

𝜎√𝑇 − 𝑡
, 

 

and Φ stands for the cumulative distribution function of the standard normal distribution. 

 

2.1. The Greeks 

 

Recall that the option value (5) depends on several underlying parameters and it is obvious that any 

parameter change should consequently influence it. The sensitivity analysis and measurement show how 

significant these changes will be; since Greek letters are commonly used to denote such sensitivity 

measures, we often call them the Greeks of an option. The availability of analytical solutions in the closed 

form, such as those for the European call and put options as presented in (5), implies the ability of deriving 

corresponding closed form representations for the sensitivity measures as well; see, for example, Hull [16]. 
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In the rest of the paper we focus only on the first-order Greeks that are represented by the first 

derivatives with respect to the underlying parameters. The simplest sensitivity measure is Delta given by: 

 

Δ𝑉 =
𝜕𝑉

𝜕𝑆
= 𝜂Φ(𝜂𝑑1), (6) 

 

where 𝜂 indicates the option type (𝜂 = 1 for call and 𝜂 = −1 for put option, respectively). Since Delta 

measures the sensitivity of the theoretical option value with respect to the changes in the underlying asset's 

price, its level is particularly important in hedging portfolios consisting of options. 

 

Furthermore, the rate of change of an option value due to the passage of time is measured by Theta, 

given by: 

 

Θ𝑉 =
𝜕𝑉

𝜕𝑡
= −𝜂𝑟𝒦𝑒−𝑟(𝑇−𝑡)Φ(𝜂𝑑2) −

𝜎𝑆𝜙(𝑑1)

2√𝑇 − 𝑡
, (7) 

 

where 𝜙 is a density function of the standard normal distribution. This sensitivity measure is also referred 

to as an option's time decay, because the option loses its value as actual time approaches maturity (i.e., 

𝑡 → 𝑇), ceteris paribus.  

 

In volatile markets the value of some option positions can be particularly sensitive to changes in the 

volatility of the underlying asset price returns. In such cases, the derivative of the option value with respect 

to such volatility, Vega, should be taken into account: 

 

𝒱𝑉 =
𝜕𝑉

𝜕𝜎
= 𝑆√𝑇 − 𝑡𝜙(𝑑1), (8) 

 

The last of the first-order Greeks considered here is Rho as given below: 

 

𝜌𝑉 =
𝜕𝑉

𝜕𝑟
= 𝜂(𝑇 − 𝑡)𝒦𝑒−𝑟(𝑇−𝑡)Φ(𝜂𝑑2), (9) 

 

which measures the sensitivity to the riskless interest rate. Since the value of an option is less sensitive to 

changes in the riskless interest rate than to the changes in other parameters, Rho is the least used of the 

first-order Greeks. For further research, we refer to, e.g., Hull [16]. 

 

2.2. Finite Difference Methods 

 

We now present a standard numerical technique, the finite difference method. This technique is very 

closely related to the Black and Scholes model because it approximates relevant partial differential 

equations by finite differences. Thus, finite difference method (FDM), as one of the simplest 

approximations of partial differential equations, replaces partial differentials of BSM PDE given by (3) 

using suitable (finite) differences. 

 

Rewrite BSM PDE, cf. (3) with riskless rate and option value on the right as follows: 

𝜕𝑉(𝑆, 𝑡)

𝜕𝑡
+ 𝑟𝑆

𝜕𝑉(𝑆, 𝑡)

𝜕𝑆
+ 𝜎2𝑆2

1

2

𝜕2𝑉(𝑆, 𝑡)

𝜕𝑆2
= 𝑟𝑉. (10) 
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Here, we can see three terms with partial derivatives, showing subsequently the first order sensitivities of 

the option price to time increments (d𝑡) and the underlying asset price increments (d𝑆), respectively, and 

the second order sensitivity to the underlying asset price increments. These partial derivatives can be 

approximated by discrete increments since first order derivative of any function 𝑓(𝑥) can be depicted 

using its first central difference approximation (CDA): 

 

𝑓′(𝑥) = lim
ℎ→0

𝑓(𝑥 + ℎ/2) − 𝑓(𝑥 − ℎ/2)

ℎ
 . (11) 

 

Besides the above mentioned CDA, we can obviously use forward difference approximation (FDA) as 

well as backward difference approximation (BDA). 

 

As an example, we will show an implicit approach to the definition of FDM according to which we 

replace d𝑆 in 
𝜕𝑉(𝑆,𝑡)

𝜕𝑆
 by its discrete version Δ𝑆. For this purpose, consider the central difference 

approximation: 

 
𝜕𝑉(𝑆, 𝑡)

𝜕𝑆
=

𝑉(𝑆 + Δ𝑆, 𝑡) − 𝑉(𝑆 − Δ𝑆, 𝑡)

2Δ𝑆
 , (12) 

 

which is generally the most precise among the three available cases (i.e., forward, backward, and central 

approximations). 

 

We can proceed in a similar way in the case of 𝜕 𝑉(𝑆, 𝑡)/𝜕𝑡, but since 𝑡 shows, by definition, positive 

increments only, FDA should be preferred: 

 
𝜕𝑉(𝑆, 𝑡)

𝜕𝑡
=

𝑉(𝑆, 𝑡 + Δt) − 𝑉(𝑆, 𝑡)

Δt
 , (13) 

 

The second order partial derivative 𝜕2𝑉(𝑆, 𝑡)/𝜕𝑆2 can be expressed as a~difference between forward 

and backward approximations with respect to Δ𝑆, and thus we have: 

 

𝜕2𝑉(𝑆, 𝑡)

𝜕𝑆2
= (

𝑉(𝑆 + ΔS, 𝑡) − 𝑉(𝑆, 𝑡)

ΔS
−

𝑉(𝑆, 𝑡) − 𝑉(𝑆 − ΔS, 𝑡)

ΔS
) / Δ𝑆

=
𝑉(𝑆 + ΔS, 𝑡) − 2𝑉(𝑆, 𝑡) + 𝑉(𝑆 − ΔS, 𝑡)

(Δ𝑆)2
, 

(14) 

 

Now, after selecting suitable finite differences to replace particular partial derivatives in BSM PDE of 

(3), we also replace 𝑉(𝑆, 𝑡) by the 𝑓𝑖,𝑗, which states for option value at time 𝑖 and (price) state 𝑗 that (note 

that we switch the positions of state and time to make it): 

 
𝑓𝑖+1,𝑗 − 𝑓𝑖,𝑗

Δ𝑡
+ 𝑟𝑗Δ𝑆

𝑓𝑖,𝑗+1 − 𝑓𝑖,𝑗−1

2Δ𝑆
− 𝜎2𝑗2Δ𝑆2

𝑓𝑖,𝑗+1 + 𝑓𝑖,𝑗−1 − 2𝑓𝑖,𝑗

2Δ𝑆2
= 𝑟𝑓𝑖,𝑗 , (15) 

 

for 𝑖 = 0, … , 𝑀 and 𝑗 = 1, … , 𝑁 − 1. This way, we can depict the complete structure of option prices for 

all the points in time, including the initial time 𝑖 = 0 (𝑡 = 0) and maturity time 𝑖 = 𝑀 (𝑡 = 𝑇), and 

selected underlying asset prices 𝑆. 

 

Subsequently, we can organize particular option values as follows: 
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𝑎𝑗𝑓𝑖,𝑗−1 + 𝑏𝑗𝑓𝑖,𝑗 + 𝑐𝑗𝑓𝑖,𝑗+1 = 𝑓𝑖+1,𝑗. (16) 

 

This can be read as that the weighted average of option values in a given time moment 𝑖 for three states of 

the underlying asset price (𝑗 − 1, 𝑗, 𝑗 + 1) is equal to option value in the next time moment (𝑖 + 1), given 

the central state 𝑗. The weights are specified by coefficients 𝑎𝑗, 𝑏𝑗, and 𝑐𝑗, each being dependent on final 

state 𝑗, so that 

 

𝑎𝑗 =
1

2
Δ𝑡(𝑟𝑗 − 𝜎2𝑗2), 𝑏𝑗 = 1 + 𝜎2𝑗2Δ𝑡 + 𝑟Δ𝑡, 𝑐𝑗 = −

1

2
Δ𝑡(𝑟𝑗 + 𝜎2𝑗2). 

 

3. Alternative Numerical Approaches 
 

In this section we focus on two relatively novel numerical techniques based on the discontinuous 

Galerkin method (DGM) and the fuzzy transform technique (FT), both falling into the class of 

variational methods. These methods significantly extend the standard numerical tools used in option 

valuation. These new approaches represent a very powerful tool for the numerical simulation of 

option valuation, since they allow for better capturing of some features of different options under 

various market conditions with respect to the discretization of the computational domain as well as 

the order of the polynomial approximation. 

 

3.1. Discontinuous Galerkin Approach 

 

The DGM combines the ideas and techniques of the finite volume method (FVM) and the finite 

element method (FEM) to take advantage of their strengths while eliminating their shortcomings. The 

FEM is a high-order method primarily designed for problems in which the exact solution is 

sufficiently regular and no steep derivatives or discontinuities in the data or solutions are present. The 

starting point is a variational formulation of the solved PDE and a concept of a weak solution as an 

element of the suitable infinite-dimensional function space (usually called the space of trial 

functions). Then, we can compute a discrete solution using the Ritz–Galerkin method as soon as a 

finite-dimensional subspace of the space of trial functions is specified. There are various ways to 

define these spaces. However, they are typically constructed as spaces of continuous piecewise 

polynomial functions with respect to the decomposition of the computational domain into finite 

elements. The basis of such a space is finite and is formed by the basis functions that generate this 

space. Therefore, the FEM in its simplest form can be regarded as a special way of constructing these 

spaces, which are called finite element spaces; see Ciarlet [4]. 

 

On the other hand, the FVM based on discontinuous, piecewise constant approximations allows 

us to capture discontinuities in the solution but has a low order of accuracy. The FVM was originally 

developed for the discretization of conservation laws. Similar to the FDM, the values are calculated 

at discrete places in a meshed geometry. The essential idea is to divide the domain into many 

discretization cells, called finite volumes, and approximate the integral conservation law for each of 

these volumes. More precisely, the volume integrals in the solved PDE that contain a divergence term 

are converted into surface ones using the divergence theorem. Then, these terms are evaluated using 

the numerical fluxes that are conserved from one finite volume to its neighbor; that is, the flux 

entering a given volume is identical to that leaving the adjacent one. This feature is called local 

conservativity. To construct the discrete solution, we assume that the solution in each finite volume 
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is constant; thus, the finite volume approach produces the piecewise constant approximations 

corresponding to the discrete unknowns (see Eymard et al. [8]). Taking all of the above into account, 

the DGM can be viewed as a generalization of the finite volume techniques into higher-order schemes 

or as an imaginary bridge between the finite element and the finite volume.  

 

The DGM provides the numerical solution of the PDEs composed of piecewise polynomial 

functions on a finite element mesh without any requirement for the continuity of the solution across 

particular elements. Therefore, this approach is suitable for problems on which other techniques fail 

or have difficulties. Although the DGM was developed in the early 1970s (see Reed and Hill [25]), 

its potency in option valuation problems has not been fully exploited yet. From this point of view, 

this method is perceived to be a very promising numerical tool. 

 

In what follows, we introduce the discrete problem to option valuation within the DG framework. 

The proposed pricing methodology related to numerical solving of the BSE PDE requires truncation 

of the spatial domain to a bounded interval Ω = (0, 𝑆max), where 𝑆max > 0 stands for the sufficiently 

large asset price. Therefore, we need to impose the option values at both endpoints of the domain Ω. 

These values are set in accordance with the theoretical European option prices (5) as 𝑆 → 0 + and 

𝑆 → +∞, i.e., 

 

𝑉(0, 𝑡) = {
                 0,

𝒦𝑒−𝑟(𝑇−𝑡),
        𝑉(𝑆max, 𝑡) = {

𝑆max − 𝒦𝑒−𝑟(𝑇−𝑡),   (call)
                                0,   (put)

 (17) 

 

Let 0 = 𝑡0 < 𝑡1 < ⋯ < 𝑡𝑀 = 𝑇 be a partition of the interval [0, 𝑇] with the constant time step 𝜏 =

𝑇/𝑀 (for simplicity) and denote 𝑈ℎ
𝑚 ∈ 𝑆ℎ

𝑝
 to be the approximation of the solution 𝑉(⋅, 𝑡𝑚). The set 

𝑆ℎ
𝑝
 is the finite-dimensional space of piecewise polynomial functions of order 𝑝, constructed over the 

partition of Ω with mesh size ℎ. 

 

The discrete solution is computed by the 𝜃-scheme that reads: Find 𝑈ℎ
𝑚+1 ∈ 𝑆ℎ

𝑝
, 𝑚 = 0, … , 𝑀 −

1, such that the following conditions are satisfied: 

 

(𝑈ℎ
𝑚, 𝑣ℎ) + 𝜃𝜏𝒜ℎ(𝑈ℎ

𝑚, 𝑣ℎ) = (𝑈ℎ
𝑚+1, 𝑣ℎ) − (1 − 𝜃)𝜏𝒜ℎ(𝑈ℎ

𝑚+1, 𝑣ℎ) 

         −𝜃𝜏ℓℎ(𝑣ℎ)(𝑡𝑚) − (1 − 𝜃)𝜏ℓℎ(𝑣ℎ)(𝑡𝑚+1),   ∀𝑣ℎ ∈ 𝑆ℎ
𝑝

, 

 

(18) 

(𝑈ℎ
𝑀 , 𝑣ℎ) = (𝑉(⋅, 𝑇), 𝑣ℎ), ∀ 𝑣ℎ ∈ 𝑆ℎ

𝑝
, (19) 

 

where (⋅,⋅) denotes the inner product in 𝐿2(Ω), the bilinear form 𝒜ℎ(⋅,⋅) stands for the DG semi-

discrete variant of the degenerate parabolic partial differential operator from (3), accompanied with 

penalties and stabilizations, and the form ℓℎ(⋅)(𝑡) balances the Dirichlet boundary conditions (17); 

for more details, see Hozman et al. [15].  

 

Note that the value of the parameter 𝜃 lies in interval [0,1] and the equation (18) results into a 

sequence of linear algebraic problems. at each time level. The existence and uniqueness of the discrete 

solution are guaranteed under the ellipticity of the form (⋅,⋅) + 𝜃𝜏𝒜ℎ(⋅,⋅) on the left-hand side of (18) 

(cf. Hozman and Tichý [12]). The starting data (19) in the recursive formulation (18) are defined as 

𝐿2-projection of payoff function (4) onto the space 𝑆ℎ
𝑝
.  

 

The properties of the 𝜃-scheme depend on the value 𝜃. The stability property holds for 
1

2
≤ 𝜃 ≤ 1 

and for 0 ≤ 𝜃 <
1

2
 we have a stability bound for the step size 𝜏. The case 𝜃 =

1

2
 is well known as the 
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Crank--Nicolson method, which is practically unconditionally stable and gives the second order 

convergence in time. In other cases, 𝜃 ≠
1

2
, we obtain the first order schemes only; see Trefethen [29]. 

Therefore, we consider the Crank--Nicolson method in our empirical study. 

 

The discrete problem (18) is equivalent to a system of linear algebraic equations at each time level 

and can always be expressed in a matrix form; see Hozman and Tichý [13]. Let 𝐵 = {𝑤𝑖}𝑖=1
DOF denote 

the basis of the space 𝑆ℎ
𝑝

 with degrees of freedom (DOF). Then, the discrete solution at each time 

level 𝑡𝑚 ∈ [0, 𝑇] can be written as a linear combination of basis functions in the form 

 

𝑈ℎ
𝑚(𝑆) = ∑ 𝜉𝑖

𝑚𝑤𝑖(𝑆)

DOF

𝑖=1

, 𝜉𝑖
𝑚 ∈ ℝ,   𝑆 ∈ Ω̅ . (20) 

 

More precisely, this discrete solution 𝑈ℎ
𝑚 is identified with the coefficient vector 𝐮𝑚 = {𝜉𝑖

𝑚}𝑖=1
DOF ∈

ℝDOF with respect to the basis 𝐵. Then, (18) reads as 

 

(𝐌 + 𝜃𝜏𝐀)𝐮𝑚 = (𝐌 − (1 − 𝜃)𝜏𝐀)𝐮𝑚+1 − 𝜏(𝜃𝐟𝑚 + (1 − 𝜃)𝐟𝑚+1), (21) 

 

Where the terminal vector 𝐮𝑀 is given by 𝑈ℎ
𝑀 arising from (19). 

 

The system matrix in (21) is a composition of the mass matrix 𝐌 and the matrix 𝐀 arising from 

the bilinear form 𝒜ℎ, defined as 

 

𝐌 = {(𝑤𝑗, 𝑤𝑖)}
𝑖,𝑗=1

DOF
, 𝐀 = {𝒜ℎ(𝑤𝑗, 𝑤𝑖)}

𝑖,𝑗=1

DOF
. (22) 

 

The right-hand side of (21) contains a weighted average of the following two vectors 

 

𝐟𝑚 = {ℓℎ(𝑤𝑖)(𝑡𝑚)}𝑖=1
DOF, 𝐟𝑚+1 = {ℓℎ(𝑤𝑖)(𝑡𝑚+1)}𝑖=1

DOF. (23) 

 

Approximate evaluation of Greeks. In order to illustrate the robustness of the presented approach,  

the numerical scheme (21) is used not only for the evaluation of option prices but also for their 

sensitivity measures. Considering the polynomial approximation at least of the first order (linear), 

Delta can be directly computed from the derivatives of the basis functions {𝑤𝑖
′}𝑖=1

DOF, using the relation 

(20) as 

 

Δ𝑉(𝑡𝑚) ≈
𝜕𝑈ℎ

𝑚

𝜕𝑆
= ∑ 𝜉𝑖

𝑚𝑤𝑖
′(𝑆)

DOF

𝑖=1

. (24) 

 

On the other hand, the remaining Greeks are numerically computed using the central finite difference 

 

Θ𝑉(𝑡𝑚) ≈
𝑈ℎ

𝑚+1 − 𝑈ℎ
𝑚−1

2𝜏
, (25) 

𝒱𝑉(𝑡𝑚, 𝜎) ≈
𝑈ℎ

𝑚(𝜎 + 𝛿) − 𝑈ℎ
𝑚(𝜎 − 𝛿)

2𝛿
, (26) 

𝜌𝑉(𝑡𝑚, 𝑟) ≈
𝑈ℎ

𝑚(𝑟 + 𝛿) − 𝑈ℎ
𝑚(𝑟 − 𝛿)

2𝛿
, (27) 
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where 0 < 𝛿 ≪ 1 and 𝜏 are sufficiently small values. This approach involves solving the option 

valuation problem twice to obtain the solution in two different stages, 𝑡 ± 𝜏, 𝜎 ± 𝛿 and 𝑟 ± 𝛿, 

respectively. Note that this approach provides only the pointwise approximation with respect to the 

underlying parameters 𝑡, 𝜎, and 𝑟. 

 

3.2. F-transform Technique 

 

The second numerical method considered here is based on the fuzzy transform (F-transform, for 

short) technique. The F-transform technique was introduced by Perfilieva [20] (see also Perfilieva 

[21]) to approximate real valued functions usually from the 𝐿2 space and has two phases: direct and 

inverse. The direct F-transform transforms a continuous (or integrable) function defined in a bounded 

interval into a finite vector of real numbers, which are called the components of the F-transform. The 

inverse F-transform returns the vector of the F-transform components to a continuous function that 

approximates the original function. The key parameter of the F-transform is a fuzzy partition of the 

domain of the considered functions by means of fuzzy sets that form the basis function. Setting fuzzy 

partitions affects the quality of the approximation of functions using the F-transform.  

 

The first application of the F-transform in the numerical solution of ordinary differential equations, 

in particular the Cauchy problem, was described by Perfilieva [22] (see also Perfilieva [20]) and 

partial differential equations of special types for multivariable functions by Štěpnička and Valášek 

[27, 28]. In Chen and Schen [3], a novel algorithm based on the F-transform has been proposed to 

obtain an approximate solution for a class of second-order ordinary differential equations with 

classical initial conditions. In Khastan et al. [17], new numerical methods based on the higher degree 

F-transform for solving the Cauchy problem have been presented. A further development of the F-

transform based numerical method introduced by Perfilieva [22] for solving a boundary value 

problem (BVP) for a second-order ODE with Dirichlet boundary conditions can be found in Perfilieva 

et al. [23]. The proposed methods outperformed the second order Runge-Kutta method. An extension 

of the shooting method for nonlinear boundary value problems with the help of F-transform was 

proposed in [24]. A generalization of the Štěpnička and Valášek approach to the numerical solution 

of partial differential equations was then proposed by Holčapek and Valášek [9, 10].  

 

The principal of the numerical solution of ordinary or partial differential equations lies in the 

substitution of the respective F-transform components for all the functions and their (partial) 

derivatives in the differential equation. The F-transform components of the derivatives of functions 

are then expressed by the method of finite differences (cf. Duffy [7]). The result of the substitution 

of the F-transform components and the expression of derivatives is a system of linear algebraic 

equations with unknown F-transform components of a function, which is a solution of the differential 

equation. The approximate solution of the differential equation is obtained by the inverse F-transform. 

The contribution of the F-transform to the numerical solution of differential equations consists mainly 

of the reduction of the number of linear algebraic equations, the solution of which becomes very 

complicated for an increasing dimension of function spaces.  

 

Approximate evaluation of Greeks. In contrast to the computation of the sensitivity measures 

(Greeks) in the case of the DGM, here we compute also the Delta values by finite differences. The 

reason is that the derivatives of basic functions of a fuzzy partition (if they exist) at all nodes are equal 

to zero, which makes the approximation of Delta extremely imprecise (biased). Precisely, as specified 

in [15], we can consider the following approximation formulas:  
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Δ𝑉(𝑆, 𝑡𝑚) ≈
𝑈1

𝑚 −  𝑈0
𝑚

ℎ
𝜑0(𝑆) + ∑

𝑈𝑘+1
𝑚 −  𝑈𝑘−1

𝑚

2ℎ

DOF−1

𝑘=1

𝜑𝑘(𝑆) +
𝑈DOF

𝑚 − 𝑈DOF−1
𝑚

ℎ
𝜑DOF(𝑆), (28) 

 

where 𝜑 is the uniform generating function of the fuzzy partition, ℎ is the bandwidth, 𝑈𝑘 is the 𝑘-th 

component of the direct F-transform with respect to the restricted fuzzy partition to Ω, i.e., the vector 

𝐔 = { 𝑈𝑘 ∣∣ 𝑘 = 0, … , DOF } of real numbers given by 

 

𝑈𝑘 =
∫ 𝑢(𝑥)𝜑𝑘(𝑥)d𝑥

Ω

∫ 𝜑𝑘(𝑥)d𝑥
Ω

, 𝑘 = 0, … , DOF. (29) 

 

It is easy to see that the first order forward and backward differences in (28) are used to approximate 

the derivatives at the boundaries and the central differences to improve the accuracy of the 

approximation. The remaining Greeks, namely, Theta, Vega and Rho, are numerically computed by 

the formulas (25), (26) and (27), respectively. 

 

4. A Comparative Example 

 

The experimental analysis provided in this section shows extensive comparison of the FDM, DG 

and FT methods in connection with the plain vanilla option price sensitivity measurement of the first 

order within the Black and Scholes setting. In particular, we consider data modified from Kopa et al. 

[18], in line with Hozman and Tichý [11] and Hozman et al. [14], who have already analyzed the 

valuation problem of vanilla put option at the same market data (DAX options) using the DG approach. 

We consider here only intermediate (maturity of 193 days) close to the ATM options with the current 

underlying (German stock market index) value being 𝑆𝑟𝑒𝑓 = 4715.879. The fixed parameters of the 

model are the riskless interest rate 𝑟 (0.039) and the volatility 𝜎 (0.4422), which is derived from true 

option prices observed at the market (implied volatility approach). 

 

Numerical approximation is crucially related to the discretization of the computational domain Ω, 

its length being deliberately chosen as eight times the strike price to suppress the influence of the 

inaccurate Dirichlet boundary condition (17). Together with this, we choose the time step 𝜏 = 1/3600 

so that the effect of time discretization on numerical results is negligible.  

 

For a more detailed comparison, each of the methods is considered in the form of linear as well as 

nonlinear (quadratic or cosine) approximations. The quality of the approximation can be easily observed 

by comparing the numerical results with the theoretical prices according to the Black and Scholes 

model. Therefore, at 𝑡 = 0, we compute the relative error 𝑒𝐿2 measured in the 𝐿2-norm over the whole 

computational domain and pointwise relative error 𝑒𝑝𝑤 evaluated in the reference point 𝑆𝑟𝑒𝑓, i.e., 

 

𝑒𝐿2 =
‖𝑈ℎ

0(𝑆) − 𝑉(𝑆, 0)‖

‖𝑉(𝑆, 0)‖
, 𝑒𝑝𝑤 =

|𝑈ℎ
0(𝑆𝑟𝑒𝑓) − 𝑉(𝑆𝑟𝑒𝑓 , 0)|

|𝑉(𝑆𝑟𝑒𝑓 , 0)|
  (30) 

 

where 𝑈ℎ
0 denotes the approximate solution obtained by one of the two numerical approaches and 

𝑉(𝑆, 𝑡) is the analytical solution given by the BS formula (5), respectively. The formulas (30) can be 

subsequently extended to the calculation of the relative errors 𝑒𝐿2 and 𝑒𝑝𝑤 for selected sensitivity 

measures using (6) – (9). 
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According to the theoretical results from Rivière [26], it is known that the DG technique produces 

(in general) optimal convergence of spatial derivatives of approximate solutions, all measured in the 𝐿2-

norm for sufficiently regular problems. In case of the remaining first order derivatives (i.e., except for 

the one with respect to the underlying asset price), similar convergence results in the 𝐿2-norm could be 

expected. On the other hand, the general results of pointwise error estimates are not available.  

 

The calculations are performed on a sequence of consecutive uniformly refined meshes with linear 

as well as nonlinear basis functions, for the particular scenario of vanilla options with 𝒦 = 4700 and 

𝑇 = 193/360 days. 

 

We use linear approximations and analyze the first-order Greeks: Delta, Theta, Vega and Rho. 

These sensitivity measures are computed by (24) using the central finite differences (25) – (27) with 

steps 𝜏 = 1/3600 and 𝛿 = 0.002. Corresponding relative errors are apparent from Figure 1. 

 

It is easy to see that relative errors in the 𝐿2-norm decrease with the mesh refinement, i.e., 

proportionally to DOF. More precisely, the order of convergence for the first-order Greeks 

corresponds at least to the order of a polynomial approximation, though the pointwise errors exhibit 

oscillatory behavior in some cases. One can easily conclude that all considered methods are quite 

comparable with respect to both relative errors and it is not easy to identify the best method. 

 

Concerning the nonlinear basis functions, the relative errors exhibit similar behavior as the linear 

basis functions. More precisely, in line with the theory, the convergence of Delta values in the 𝐿2-

norm is optimal for DGM, i.e., quadratic for the approximation with quadratic basis functions. 

Compared to this behavior, the raised cosine basis functions in FT also exhibit quadratic trend in the 

𝐿2-errors for the Delta values. As expected, the results for the remaining first-order Greeks are of 

the same quality and their orders of accuracy are consistent with the Delta ones. On the other hand, 

from the results for pointwise errors, nothing more rigorous can be inferred. Thus, for now, one 

should be satisfied with the claim that errors have more or less downward trends. 

 

5. Conclusions 

 

We proposed two novel numerical approaches newly applied for option valuation problem with 

special attention being paid to the evaluation of the sensitivity parameters, the so-called Greek 

letters. The first technique is derived from the discontinuous Galerkin method, which is based on 

discontinuous piecewise polynomial approximations. The second technique is based on the F-

transform, the application of which to the original continuous problem leads to a new one for the 

unknown components of this transform. The resulting problem is then discretized using the finite 

difference method. In the case of linear approximation, the results are very similar amongst all the 

methods, but, for nonlinear basis functions, the differences in these approaches appear to be 

significant, especially due to the different types of basis functions (parabola vs. raised cosine). On 

the other hand, the benefits of the F-transform could mainly be reflected in the possibility of reducing 

the number of degrees of freedom in the discretization under the preserved order of accuracy, which 

actually contribute to the decrease of the computational time. However, this advantage of the F-

transform observed mainly in solving the BS equation containing several underlying factors, in 

which the complexity of the calculation grows exponentially. Regarding the discontinuous Galerkin 

method, its main advantages lie in the possibility of an easy usage of the discontinuous payoff 

functions and discrete sampling. 
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Figure 1. Comparison of relative 𝐿2-errors (left) and pointwise errors (right) of the Delta, Theta, 

Vega, and Rho values for particular methods. The horizontal axis represents the degrees of 

freedom. 
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