Using Nesterov's Excessive Gap Method as Basic Procedure in Chubanov's Method for Solving a Homogeneous Feasibility Problem

Abstract

Z. Wei ${ }^{1}$, C. Roos ${ }^{2, *}$

We deal with a recently proposed method of Chubanov [1], for solving linear homogeneous systems with positive variables. We use Nesterov's excessive gap method in the basic procedure. As a result, the iteration bound for the basic procedure is reduced by the factor $n \sqrt{n}$. The price for this improvement is that the iterations are more costly, namely $O\left(n^{2}\right)$ instead of $O(n)$. The overall gain in the complexity hence becomes a factor of \sqrt{n}.

Keywords: Linear homogeneous systems, Algorithm, Polynomial-time.

Manuscript was received on 01/07/2018 revised on 12/09/2018 and accepted for publication on 20/10/2018

1. Introduction

We deal with the problem

$$
\begin{align*}
& \text { find } x \in \mathbb{R}^{n} \\
& \text { subject to } A x=0, \quad x>0, \tag{1}
\end{align*}
$$

where A is an integer (or rational) matrix of size $m \times n$ and $\operatorname{rank}(A)=m$.
Recently Chubanov [1] proposed a polynomial-time algorithm for solving this problem. He explored the fact that (1) is homogeneous as follows. If x is feasible for (1), then also $x^{\prime}=x / \max (x)$ is feasible for (1), and this solution belongs to the unit cube, i.e., $x^{\prime} \in[0,1]^{n}$. It follows that (1) is feasible if and only if the system

$$
\begin{equation*}
A x=0, \quad x \in(0,1]^{n} \tag{2}
\end{equation*}
$$

is feasible. Moreover, if $d>0$ is a vector such that $x \leq d$ holds for every feasible solution of (2), then $x^{\prime \prime}=x / d \in(0,1]^{n}$, where x / d denotes the entry-wise quotient of x and d, and so $x_{i}^{\prime \prime}=x_{i} / d_{i}$ for each i. This means that $x^{\prime \prime}$ is feasible for the system

$$
\begin{equation*}
A D x=0, \quad x \in(0,1]^{n}, \tag{3}
\end{equation*}
$$

[^0]where $D=\operatorname{diag}(d)$. Obviously, problem (3) is of the same type as problem (2), since it arises from (2) by rescaling A to $A D$. Moreover, if x solves (3), then $D x$ solves (2). The main algorithm starts with $d=\mathbf{1}$, with $\mathbf{1}$ denoting the all-one vector, and successively improves d.

A key ingredient in Chubanov's algorithm is the so-called Basic Procedure (BP). The BP generates one of the following three outputs:
case 1: a feasible solution of (1);
case 2: a certificate for the infeasibility of (1);
case 0 : a cut for the feasible region of (2).
In case 0 , the cut has the form $x_{k} \leq \frac{1}{2}$ for some index k and is used to update d by dividing d_{k} by 2. The rescaling happens in the main algorithm, which sends the rescaled matrix $A D$ to the BP until the BP returns case 1 or case 2 .

Since A has integer (or rational) entries, the number of calls of the BP is polynomially bounded by $O(n L)$, where L denotes the bit size A. This follows from a classical result of Khachiyan [2] that gives a positive lower bound on the positive entries of a solution of a linear system of equations.

The BP of [1] needs at most $O\left(n^{3}\right)$ iterations per call and $O(n)$ time per iteration. So, per call the BP needs $O\left(n^{4}\right)$ time and hence the overall time complexity becomes $O\left(n^{5} L\right)$. By performing a more careful analysis, Chubanov reduced this bound by a factor n to $O\left(n^{4} L\right)$ [1, Theorem 2.1].

Other BPs have been proposed in, e.g., [4, 5]. These BPs also need $O\left(n^{3}\right)$ iterations per call and $O(n)$ time per iteration, and so they also yield an overall time complexity of $O\left(n^{5} L\right)$.

In [6], we proposed a BP based on the Mirror-Prox method of Nemirovski. It improves the iteration bound per call with a factor $n \sqrt{n}$ and leads to an overall time complexity of $O\left(n^{4.5} L\right)$, because it requires $O\left(n^{2}\right)$ time per iteration.

Here, we analyze a BP based on the Excessive Gap technique of Nesterov [3]. The outline of the remainder of the paper is as follows. We present some preliminary results in Section 2. In Section 3 we describe the new BP and prove the iteration bound of $O(n \sqrt{n})$. Since the time complexity per iteration is $O\left(n^{2}\right)$, the overall time complexity is the same as the one given in [6].

2. Preliminaries

Let \mathcal{N}_{A} denote the null space of the $m \times n$ matrix A and \mathcal{R}_{A} denote its row space, that is,

$$
\mathcal{N}_{A}:=\left\{x \in \mathbb{R}^{n}: A x=0\right\}, \quad \mathcal{R}_{A}:=\left\{A^{T} u: u \in \mathbb{R}^{m}\right\} .
$$

We denote the orthogonal projections of \mathbb{R}^{n} onto \mathcal{N}_{A} and \mathcal{R}_{A} as P_{A} and Q_{A}, respectively:

$$
P_{A}:=I-A^{T}\left(A A^{T}\right)^{-1} A, \quad Q_{A}:=A^{T}\left(A A^{T}\right)^{-1} A .
$$

Our assumption $\operatorname{rank}(A)=m$ implies that the inverse of $A A^{T}$ exists. Obviously, we have

$$
I=P_{A}+Q_{A}, \quad P_{A} Q_{A}=0, \quad A P_{A}=0, \quad A Q_{A}=A
$$

Now, let $y \in \mathbb{R}^{n}$. In the sequel, we use the notation

$$
z=P_{A} y, \quad v=Q_{A} y
$$

So, z and v are the orthogonal components of y in the spaces \mathcal{N}_{A} and \mathcal{R}_{A}, respectively:

$$
y=z+v, \quad z \in \mathcal{N}_{A}, \quad v \in \mathcal{R}_{A} .
$$

These vectors play a crucial role in our approach. This is due to the following lemma.
Lemma 2.1. (Lemma 2.1 of [5]) If $z>0$, then z solves the primal problem (1) and if $0 \neq v \geq 0$, then v provides a certificate for the infeasibility of (1).

As usual, we always assume $y \in \Delta$, where Δ denotes the unit simplex in \mathbb{R}^{n}. So,

$$
\Delta=\left\{u: \mathbf{1}^{T} u=1, u \geq 0\right\}
$$

In the literature we nowadays have several ways to derive from y, z and v an upper bound for the k-th coordinate of every x that is feasible for (3). For example,

$$
x_{k} \leq \begin{cases}\frac{\sqrt{n}\|z\|}{y_{k}}, & \text { in }[1] \\ \frac{\mathbf{1}^{T} z^{+}}{y_{k}}, & \text { in }[4,5] \\ \mathbf{1}^{T}\left(\frac{v}{-v_{k}}\right)^{+}, & \text {in }[5,6]\end{cases}
$$

Here, we are only interested in the so-called proper cuts, where the upper bound is smaller than or equal to $\frac{1}{2}$. If $2 n \sqrt{n}\|z\| \leq 1$, then the first two cuts are proper for at least one k. This follows for the first bound simply by taking k such that $y_{k} \geq 1 / n$, and for the second bound by also using $\mathbf{1}^{T} z^{+} \leq$ $\sqrt{n}\left\|z^{+}\right\| \leq \sqrt{n}\|z\|$. For the third bound, it seems far from trivial that we have the same property; for a proof we refer to the Appendix in [6] ${ }^{3}$.

It may also be mentioned that the third cut is always at least as tight as the other two cuts; this is shown in [5]. In the rest of the paper, we use this cut, denoting the upper bound as $\sigma_{k}(y)$ and defining

$$
\sigma(y)=\min _{k} \sigma_{k}(y)
$$

Next, the BP based on Nesterov's Excessive Gap method is described as in Algorithm 1.

[^1]```
Algorithm 1: \([y, v, z, J\), case \(]=\operatorname{Excessive} \operatorname{Gap} \mathrm{BP}\left(P_{A}\right)\)
 Initialize: \(k=0 ; \bar{u}=\frac{1}{n} 1 ;\) case \(=0 ; J=\emptyset ; u_{0}=\bar{u} ; \mu_{0}=2 ;\)
 \(y_{0}=y_{\mu_{0}}\left(u_{0}\right)\)
 while \(\sigma\left(y_{k}\right)>\frac{1}{2}\) and \(\sigma\left(u_{k}\right)>\frac{1}{2}\) and case \(=0\) do
 \(z_{k}=P_{A} y_{k}\)
 if \(z_{k}>0\) then
 case \(=1 \quad\left(z_{k}\right.\) is primal feasible \()\); return
 else
 \(v_{k}=y_{k}-z_{k}\)
 if \(v_{k} \geq 0\) then
 case \(=2\left(u_{k}\right.\) is dual feasible); return
 else
 \(\theta_{k}=\frac{2}{k+3}\)
 \(u_{k+1}=\left(1-\theta_{k}\right) u_{k}+\theta_{k}\left((1-\theta) y_{k}+\theta_{k} y_{\mu_{k}}\left(y_{k}\right)\right)\)
 \(\mu_{k+1}=\left(1-\theta_{k}\right) \mu_{k}\)
 \(y_{k+1}=\left(1-\theta_{k}\right) y_{k}+\theta_{k} y_{\mu_{k+1}}\left(u_{k+1}\right)\)
 \(k=k+1\)
 end
 end
 end
 if case \(=0\) then
 find a nonempty set \(J\) such that
 \(J \subseteq\left\{j:\right.\) bound \(\left._{j}\left(y_{k}\right) \leq \frac{1}{2}\right\} \bigcup\left\{j:\right.\) bound \(\left._{j}\left(u_{k}\right) \leq \frac{1}{2}\right\}\)
 end
```

In Algorithm 1, $k$ serves as the iteration counter. We also use the following notation:

$$
\begin{equation*}
y_{\mu}(v):=\operatorname{argmin}_{u \in \Delta}\left\{u^{T} P_{A} v+\frac{\mu}{2}\|u-\bar{u}\|^{2}\right\}, \quad v \in \Delta \tag{4}
\end{equation*}
$$

where $\bar{u}=\mathbf{1} / n$. Note that in each iteration two problems of this type need to be solved, in line 12 and line 14 , respectively. In Section 4 we show that if $P_{A} v$ is known, then problem (4) can be solved in $\mathrm{O}(\mathrm{n})$ time. But, we first show in the next section that the number of iterations of Algorithm 1 never exceeds $O(n \sqrt{n})$.

## 3. Iteration Bound

Recall that $y$ yields a solution of problem (2) if $z=P_{A} y>0$. If $u \in \Delta$ then $u^{T} z \geq \min z$, for each $z \in \mathbb{R}^{n}$ and $\min _{u \in \Delta} u^{T} z=\min z$. Hence, $P_{A} y>0$ holds if and only if $\psi(y)>0$, where

$$
\psi(y):=\min _{u \in \Delta} u^{T} P_{A} y .
$$

This certainly holds if $y$ solves the problem

$$
\max _{y \in \Delta} \psi(y)=\max _{y \in \Delta} \min _{u \in \Delta} u^{T} P_{A} y>0
$$

In order to deal with this problem, we use an adapted version of the excessive gap technique of Nesterov [3] by considering a smoothed version of the above problem. For decreasing values of the parameter $\mu$, we consider instead the problem of maximizing the function $\phi_{\mu}(y)$, where

$$
\phi_{\mu}(y)=-\frac{1}{2}\left\|P_{A} y\right\|^{2}+\min _{u \in \Delta}\left\{u^{T} P_{A} y+\frac{\mu}{2}\|u-\bar{u}\|^{2}\right\}
$$

with $\bar{u}=1 / n$ and $\mu \geq 0$.
In this section, we show that the algorithm needs at most $O(n \sqrt{n})$ iterations to generate a vector $y \in \Delta$ such that $2 n \sqrt{n}\|z\| \leq 1$. For the proof, we consider a run of the BP during which $z$ has always a nonpositive entry and $v$ a negative entry. So, the BP does not halt in line 5 or line 9 . In that case, the algorithm stops after at most $2 n \sqrt{2 n}$ iterations, as we show below. We start with a relatively simple lemma.

Lemma 3.1. $0 \leq \phi_{\mu}(y)-\phi_{0}(y) \leq \mu$.
Proof. Let $u \in \Delta$. Then $\|u\|^{2}=\sum_{i=1}^{n} u_{i}^{2} \leq \sum_{i=1}^{n} u_{i}=1$. Similarly, $\|\bar{u}\|^{2} \leq 1$. Hence,

$$
\frac{1}{2}\|u-\bar{u}\|^{2}=\frac{1}{2}\left(\|u\|^{2}+\|\bar{u}\|^{2}-2 u^{T} \bar{u} \leq 1\right.
$$

where we also used $u \geq 0$ and $\bar{u} \geq 0$. Using this, we write

$$
\phi_{\mu}(y) \leq-\frac{1}{2}\left\|P_{A} y\right\|^{2}+\min _{u \in \Delta} u^{T} P_{A} y+\mu=\mu+\phi_{0}(y)
$$

It remains to show that $\phi_{\mu}(y) \geq \phi_{0}(y)$. This follows since $\phi_{\mu}(y)$ is increasing in $\mu$. Hence the proof is complete.

Lemma 3.2. $\frac{1}{2}\left\|P_{A} y_{k}\right\|^{2} \leq \phi_{\mu_{k}}\left(u_{k}\right)$.
Proof. We start with the case where $k=0$. Then, we have $u_{0}=\bar{u}=\frac{1}{n}, \mu_{0}=2, y_{0}=y_{\mu_{0}}\left(u_{0}\right)$. We simplify the notation by denoting $P_{A}$ simply as $P$. Then, we may write

$$
\begin{aligned}
\frac{1}{2}\left\|P_{A} y_{0}\right\|^{2} & =\frac{1}{2}\left\|P\left(y_{0}-\bar{u}\right)+P(\bar{u})\right\|^{2} \\
& =\frac{1}{2}\left\|P\left(y_{0}-\bar{u}\right)\right\|^{2}+\frac{1}{2}\|P \bar{u}\|^{2}+\left(P y_{0}\right)^{T} P \bar{u}-\|P \bar{u}\|^{2} \\
& \leq-\frac{1}{2}\|P \bar{u}\|^{2}+y_{0}^{T} P \bar{u}+\frac{1}{2}\left\|y_{0}-\bar{u}\right\|^{2} \\
& \leq-\frac{1}{2}\|P \bar{u}\|^{2}+y_{0}^{T} P \bar{u}+\frac{\mu_{0}}{2}\left\|y_{0}-\bar{u}\right\|^{2} \\
& =-\frac{1}{2}\|P \bar{u}\|^{2}+\min _{u \in \Delta}\left\{u^{T} P u_{0}+\frac{\mu_{0}}{2}\|u-\bar{u}\|^{2}\right\}=\phi_{\mu_{0}}\left(u_{0}\right)
\end{aligned}
$$

where the last but one equality is due to the definition of $y_{0}$. We proceed with induction on $k$. To simplify the notation further, we denote $y=y_{k}, \mu=\mu_{k}, u=u_{k}, y^{\prime}=y_{k+1}, \mu^{\prime}=\mu_{k+1}, u^{\prime}=u_{k+1}$ and

$$
\begin{equation*}
\hat{y}=(1-\theta) y+\theta y_{\mu}(y) . \tag{5}
\end{equation*}
$$

Then, we have

$$
\begin{aligned}
u^{\prime} & =(1-\theta)(u+\theta y)+\theta^{2} y_{\mu}(y) \\
& =(1-\theta) u+\theta\left[(1-\theta) y+\theta y_{\mu}(y)\right] \\
& =(1-\theta) u+\theta \hat{y} .
\end{aligned}
$$

Moreover,

$$
\mu^{\prime}=(1-\theta) \mu
$$

and

$$
\begin{equation*}
y^{\prime}=(1-\theta) y+\theta y_{\mu^{\prime}}\left(u^{\prime}\right) \tag{6}
\end{equation*}
$$

Under the assumption that $\frac{1}{2}\|P y\|^{2} \leq \phi_{\mu}(u)$ we need to show that $\frac{1}{2}\left\|P y^{\prime}\right\|^{2} \leq \phi_{\mu^{\prime}}\left(u^{\prime}\right)$.
We have

$$
\begin{aligned}
\phi_{\mu^{\prime}}\left(u^{\prime}\right) & =-\frac{1}{2}\left\|P u^{\prime}\right\|^{2}+\min _{u \in \Delta}\left\{u^{T} P u^{\prime}+\frac{\mu^{\prime}}{2}\|u-\bar{u}\|^{2}\right\} \\
& =-\frac{1}{2}\left\|P u^{\prime}\right\|^{2}+y_{\mu^{\prime}}\left(u^{\prime}\right)^{T} P u^{\prime}+\frac{\mu^{\prime}}{2}\left\|y_{\mu^{\prime}}\left(u^{\prime}\right)-\bar{u}\right\|^{2} .
\end{aligned}
$$

Due to the definition of $u^{\prime}$ and since $\|z\|^{2}$ is convex in $z$, we get

$$
\left\|P u^{\prime}\right\|^{2}=\|(1-\theta) P u+\theta P \hat{y}\|^{2} \leq(1-\theta)\|P u\|^{2}+\theta\|P \hat{y}\|^{2} .
$$

Hence,

$$
\begin{aligned}
\phi_{\mu^{\prime}}\left(u^{\prime}\right) & \geq-\frac{1}{2}(1-\theta)\|P u\|^{2}-\frac{1}{2} \theta\|P \hat{y}\|^{2}+y_{\mu^{\prime}}\left(u^{\prime}\right)^{T} P u^{\prime}+\frac{\mu^{\prime}}{2}\left\|y_{\mu^{\prime}}\left(u^{\prime}\right)-\bar{u}\right\|^{2} \\
& =-\frac{1}{2}(1-\theta)\|P u\|^{2}-\frac{1}{2} \theta\|P \hat{y}\|^{2}+y_{\mu^{\prime}}\left(u^{\prime}\right)^{T} P((1-\theta) u+\theta \hat{y})+\frac{\mu^{\prime}}{2}\left\|y_{\mu^{\prime}}\left(u^{\prime}\right)-\bar{u}\right\|^{2} \\
& \left.=(1-\theta)\left[-\frac{1}{2}\|P u\|^{2}+y_{\mu^{\prime}}\left(u^{\prime}\right)^{T} P u+\frac{\mu}{2} \| y_{\mu^{\prime}}\left(u^{\prime}\right)-\bar{u}\right\} \|^{2}\right]+\theta\left[-\frac{1}{2}\|P \hat{y}\|^{2}+y_{\mu^{\prime}}\left(u^{\prime}\right)^{T} P \hat{y}\right] .
\end{aligned}
$$

Let us denote the two bracketed expressions shortly by $T_{1}$ and $T_{2}$, respectively. We proceed by evaluating $T_{1}$, the first bracketed expression. This can be reduced as follows:

$$
T_{1}=-\frac{1}{2}\|P u\|^{2}+y_{\mu^{\prime}}\left(u^{\prime}\right)^{T} P u+\frac{\mu}{2}\left\|y_{\mu^{\prime}}\left(u^{\prime}\right)-\bar{u}\right\|^{2}
$$

$$
\begin{aligned}
& =\left(\phi_{\mu}(u)-y_{\mu}(u)^{T} P u-\frac{\mu}{2}\left\|y_{\mu}(u)-\bar{u}\right\|^{2}\right)+y_{\mu^{\prime}}\left(u^{\prime}\right)^{T} P u+\frac{\mu}{2}\left\|y_{\mu^{\prime}}\left(u^{\prime}\right)-\bar{u}\right\|^{2} \\
& =\phi_{\mu}(u)+(P u)^{T}\left(y_{\mu^{\prime}}\left(u^{\prime}\right)-y_{\mu}(u)\right)+\frac{\mu}{2}\left(\left\|y_{\mu^{\prime}}\left(u^{\prime}\right)-\bar{u}\right\|^{2}-\left\|y_{\mu}(u)-\bar{u}\right\|^{2}\right) .
\end{aligned}
$$

Putting $a=y_{\mu^{\prime}}\left(u^{\prime}\right)$ and $b=y_{\mu}(u)$, we have

$$
\begin{align*}
\|a-\bar{u}\|^{2}-\|b-\bar{u}\|^{2} & =\|a\|^{2}-\|b\|^{2}-2 a^{T} \bar{u}+2 b^{T} \bar{u} \\
& =\|a-b\|^{2}-2\|b\|^{2}+2 a^{T} b-2 a^{T} \bar{u}+2 b^{T} \bar{u} \\
& =\|a-b\|^{2}+2(b-\bar{u})^{T}(a-b) \tag{7}
\end{align*}
$$

Using this, we obtain

$$
T_{1}=\phi_{\mu}(u)+\left(P u+\mu\left(y_{\mu}(u)-\bar{u}\right)\right)^{T}\left(y_{\mu^{\prime}}\left(u^{\prime}\right)-y_{\mu}(u)\right)+\frac{\mu}{2}\left\|y_{\mu^{\prime}}\left(u^{\prime}\right)-y_{\mu}(u)\right\|^{2}
$$

From (5) and (6), we deduce

$$
\theta\left(y_{\mu^{\prime}}\left(u^{\prime}\right)-y_{\mu}(u)\right)=y^{\prime}-\hat{y}
$$

We also use that the definition of $y_{\mu}(u)$ implies that this vector minimizes $y^{T} P u+\frac{\mu}{2}\|y-\bar{u}\|^{2}$ over all $y \in \Delta$. Hence, at $y=y_{\mu}(u)$ the vector $\nabla_{y}\left(y^{T} P u+\frac{\mu}{2}\|y-\bar{u}\|^{2}\right)$ has nonnegative inner product with $u-y_{\mu}(u)$, for all $u \in \Delta$. Since $y_{\mu^{\prime}}\left(u^{\prime}\right) \in \Delta$, we get

$$
\left(P u+\mu\left(y_{\mu}(u)-\bar{u}\right)\right)^{T}\left(y_{\mu^{\prime}}\left(u^{\prime}\right)-y_{\mu}(u)\right) \geq 0
$$

Therefore, by using the induction hypothesis, we obtain

$$
T_{1} \geq \phi_{\mu}(u)+\frac{\mu}{2 \theta^{2}}\left\|y^{\prime}-\hat{y}\right\|^{2} \geq \frac{1}{2}\|P y\|^{2}+\frac{\mu}{2 \theta^{2}}\left\|y^{\prime}-\hat{y}\right\|^{2}
$$

Due to (7), with $\bar{u}=0$, we get

$$
\begin{equation*}
\|a\|^{2} \geq\|b\|^{2}+2 b^{T}(a-b) \tag{8}
\end{equation*}
$$

where $a$ and $b$ are arbitrary vectors. Using this and $P^{2}=P$, we obtain

$$
\frac{1}{2}\|P y\|^{2} \geq \frac{1}{2}\|P \hat{y}\|^{2}+(P \hat{y})^{T} P(y-\hat{y})=\frac{1}{2}\|P \hat{y}\|^{2}+(y-\hat{y})^{T} P \hat{y} .
$$

It follows that

$$
T_{1} \geq \frac{1}{2}\|P \hat{y}\|^{2}+(y-\hat{y})^{T} P \hat{y}+\frac{\mu}{2 \theta^{2}}\left\|y^{\prime}-\hat{y}\right\|^{2}
$$

For the second bracketed term we write

$$
T_{2}=-\frac{1}{2}\|P \hat{y}\|^{2}+y_{\mu^{\prime}}\left(u^{\prime}\right)^{T} P \hat{y}=\frac{1}{2}\|P \hat{y}\|^{2}+\left(y_{\mu^{\prime}}\left(u^{\prime}\right)-\hat{y}\right)^{T} P \hat{y} .
$$

Substitution yields, while also using $(1-\theta) \mu=\mu^{\prime}$,

$$
\begin{aligned}
\phi_{\mu^{\prime}}\left(u^{\prime}\right) & \geq(1-\theta) T_{1}+\theta T_{2} \\
& \geq \frac{1}{2}\|P \hat{y}\|^{2}+(1-\theta)(y-\hat{y})^{T} P \hat{y}+\theta\left[y_{\mu^{\prime}}\left(u^{\prime}\right)-\hat{y}\right]^{T} P \hat{y}+\frac{\mu^{\prime}}{2 \theta^{2}}\left\|y^{\prime}-\hat{y}\right\|^{2} \\
& =\frac{1}{2}\|P \hat{y}\|^{2}+\left[(1-\theta)(y-\hat{y})^{T}+\theta\left(y_{\mu^{\prime}}\left(u^{\prime}\right)-\hat{y}\right)\right]^{T} P \hat{y}+\frac{\mu^{\prime}}{2 \theta^{2}}\left\|y^{\prime}-\hat{y}\right\|^{2} \\
& =\frac{1}{2}\|P \hat{y}\|^{2}+\left[-\hat{y}+\left[(1-\theta) y+\theta y_{\mu^{\prime}}\left(u^{\prime}\right)\right]\right]^{T} P \hat{y}+\frac{\mu^{\prime}}{2 \theta^{2}}\left\|y^{\prime}-\hat{y}\right\|^{2} \\
& =\frac{1}{2}\|P \hat{y}\|^{2}+\left(y^{\prime}-\hat{y}\right)^{T} P \hat{y}+\frac{\mu^{\prime}}{2 \theta^{2}}\left\|y^{\prime}-\hat{y}\right\|^{2} .
\end{aligned}
$$

According to the definition of $k$ in Algorithm 1, the iteration number is given by $k+1$. We claim that

$$
\begin{equation*}
\mu_{k}=\frac{4}{(k+1)(k+2)} \tag{9}
\end{equation*}
$$

This is true if $k=0$, because $\mu_{0}=2$. We proceed with induction on $k$. Suppose that the claim holds for some $k \geq 0$. Since $\theta_{k}=2 /(k+3)$, we get

$$
\mu_{k+1}=\left(1-\theta_{k}\right) \mu_{k}=\left(1-\frac{2}{k+3}\right) \mu_{k}=\frac{k+1}{k+3} \frac{4}{(k+1)(k+2)}=\frac{4}{(k+2)(k+3)},
$$

as desired. As a consequence, we have

$$
\frac{\mu^{\prime}}{\theta^{2}}=\frac{\mu_{k+1}}{\theta_{k}^{2}}=\frac{\frac{4}{(k+2)(k+3)}}{\frac{4}{(k+3)^{2}}}=\frac{k+3}{k+2}>1 .
$$

By also using that $P$ is a projection matrix, we obtain

$$
\phi_{\mu^{\prime}}\left(u^{\prime}\right) \geq \frac{1}{2}\|P \hat{y}\|^{2}+\left(y^{\prime}-\hat{y}\right)^{T} P \hat{y}+\frac{1}{2}\left\|P\left(y^{\prime}-\hat{y}\right)\right\|^{2}=\frac{1}{2}\left\|P y^{\prime}\right\|^{2} .
$$

Hence the proof of the lemma is complete.
Lemma 3.3. If Algorithm 1 does not halt after $k \geq 1$ iterations, then

$$
\left\|P y_{k}\right\|^{2} \leq \frac{8}{(k+1)^{2}}-\frac{1}{n^{3}}
$$

Proof. Since the algorithm does not halt after $k$ iterations, we have $\left\|P_{A} y_{k}\right\|^{2} \leq 2 \phi_{\mu_{k}}\left(u_{k}\right)$ by Lemma 3.2 and $\left\|P_{A} u_{k}\right\|^{2} \geq \frac{1}{n^{3}}$ by the Appendix in [6]. Also, using Lemma 3.1, we get

$$
\left\|P_{A} y_{k}\right\|^{2} \leq 2 \phi_{\mu_{k}}\left(u_{k}\right) \leq 2\left(\phi_{0}\left(u_{k}\right)+\mu_{k}\right) \leq 2 \mu_{k}-\frac{1}{n^{3}}
$$

where we also used

$$
\phi_{0}\left(u_{k}\right)=-\frac{1}{2}\left\|P u_{k}\right\|^{2}+\min _{u \in \Delta} u^{T} P u_{k} \leq-\frac{1}{2}\left\|P u_{k}\right\|^{2} \leq-\frac{1}{2 n^{3}},
$$

since $P u_{k}$ has at least one entry less than or equal to zero (otherwise, $u_{k}$ would solve the problem and the algorithm would halt with case 1). Due to (9) it follows that

$$
\left\|P_{A} y_{k}\right\|^{2} \leq \frac{8}{(k+1)(k+2)}-\frac{1}{n^{3}} \leq \frac{8}{(k+1)^{2}}-\frac{1}{n^{3}}
$$

proving the lemma.
Lemma 3.4. Algorithm 1 requires at most $2 n \sqrt{n}$ iterations.
Proof. As we established in Section $2, y_{k}$ gives rise to a proper cut if $n^{3}\left\|P_{A} y_{k}\right\|^{2} \leq 1$. This certainly holds if $4 n^{3} \leq(k+1)^{2}$, which is equivalent to $k+1 \geq 2 n \sqrt{n}$. Hence, the proof is complete.

## 4. Time Complexity per Iteration

In this section, we prove that problem (4) can be solved in $O(n)$ time, provided that $z=P_{A} y$ has been computed. The problem can then be restated as

$$
\begin{equation*}
\min _{u}\left\{u^{T} z+\frac{\mu}{2}\|u-\bar{u}\|^{2}: \mathbf{1}^{T} u=1, u \geq 0\right\} . \tag{10}
\end{equation*}
$$

The Lagrange dual of this problem can be simplified to

$$
\begin{equation*}
\max _{v, \xi}\left\{\xi-\frac{\mu}{2}\|v\|^{2}: \mu v-\xi \mathbf{1} \geq w\right\} \tag{11}
\end{equation*}
$$

where

$$
w=\frac{\mu}{2 n} \mathbf{1}-z
$$

Indeed, as we next show we have weak duality. Let $u$ be feasible for (10) and the pair $(v, \xi)$ for (11). Then, the duality gap, i.e., the primal objective value minus the dual objective value, can be reduced as follows:

$$
\begin{aligned}
u^{T} Z+\frac{\mu}{2}\|u-\bar{u}\|^{2}-\left(\xi-\frac{\mu}{2}\|v\|^{2}\right) & \\
& =u^{T}\left(\frac{\mu}{2 n} \mathbf{1}-w\right)+\frac{\mu}{2}\|u\|^{2}+\frac{\mu}{2}\|\bar{u}\|^{2}-\mu u^{T} \bar{u}-\left(\xi-\frac{\mu}{2}\|v\|^{2}\right) \\
& =\frac{\mu}{2 n}-u^{T} w+\frac{\mu}{2}\|u\|^{2}+\frac{\mu}{2 n}-\frac{\mu}{n} u^{T} \mathbf{1}-\left(\xi-\frac{\mu}{2}\|v\|^{2}\right)
\end{aligned}
$$

$$
\begin{aligned}
& =-u^{T} w+\frac{\mu}{2}\|u\|^{2}-\left(\xi-\frac{\mu}{2}\|v\|^{2}\right) \\
& \geq u^{T}(\xi \mathbf{1}-\mu v)+\frac{\mu}{2}\|u\|^{2}-\left(\xi-\frac{\mu}{2}\|v\|^{2}\right) \\
& =-\mu u^{T} v+\frac{\mu}{2}\|u\|^{2}+\frac{\mu}{2}\|v\|^{2} \\
& =\frac{\mu}{2}\|u-v\|^{2} \geq 0 .
\end{aligned}
$$

This makes clear that the duality gap vanishes if and only if

$$
\begin{equation*}
v=u, \quad u^{T}(\mu v-\xi \mathbf{1}-w)=0 . \tag{12}
\end{equation*}
$$

Using this, the optimality conditions for $u \in \Delta$ can be expressed in $u$ alone as follows:

$$
\begin{equation*}
\mu u-\xi \mathbf{1} \geq w, \quad u^{T}(\mu u-\xi \mathbf{1}-w)=0, \tag{13}
\end{equation*}
$$

for some $\xi$. Now, let $I:=\left\{i: u_{i}>0\right\}$. Since $u \geq 0$ and $\mu u-\xi \mathbf{1}-w \geq 0$, we deduce from $u^{T}(\mu u-\xi \mathbf{1}-w)=0$ that

$$
i \in I \Rightarrow \mu u_{i}-\xi=w_{i} .
$$

If $j \notin I$, then $u_{j}=0$, whence $\mu u-\xi \mathbf{1} \geq w$ implies $-\xi \geq w_{j}$. It follows that if $i \in I$ and $j \notin I$, then

$$
\begin{equation*}
w_{i}=\mu u_{i}-\xi \geq \mu u_{i}+w_{j}>w_{j}, \quad \forall i \in I, \quad \forall j \notin I . \tag{14}
\end{equation*}
$$

We conclude from this that $w_{I}$ consists of the $|I|$ largest entries of $w$ and the elements outside $I$ are strictly smaller than those in $I$. For the moment, assume that $w$ is ordered in nonincreasing order, so that

$$
\begin{equation*}
w_{1} \geq w_{2} \geq \cdots \geq w_{n} . \tag{15}
\end{equation*}
$$

It then follows that $I$ has the form $I=\{1, \ldots, k\}$, for some $k$, and $w_{j}<w_{k}$, for each $\left.j\right\rangle k$. Now, using $\mathbf{1}^{T} u=1$ and $u_{j}=0$, for $j>k$, we may write

$$
1=\mathbf{1}^{T} u=\sum_{i=1}^{k} u_{i}=\sum_{i=1}^{k} \frac{w_{i}+\xi}{\mu}=\frac{1}{\mu}\left(k \xi+\sum_{i=1}^{k} w_{i}\right) .
$$

From this, we obtain an expression for the optimal value of $\xi$, namely,

$$
\begin{equation*}
\xi=\frac{1}{k}\left(\mu-\sum_{i=1}^{k} w_{i}\right) \tag{16}
\end{equation*}
$$

and then

$$
u_{i}= \begin{cases}\frac{1}{\mu}\left(w_{i}+\xi\right), & i \leq k  \tag{17}\\ 0, & i>k\end{cases}
$$

If $k<n$, then the domain of the primal problem (10) is given by

$$
\left\{u \in \Delta: u_{k+1}=\cdots=u_{n}=0\right\}
$$

which expands if $k$ increases. Hence, the optimal objective value occurs if $k$ is maximal. One easily verifies that the vector $u$ determined by (16) and (17) belongs to $\Delta$ only if

$$
\begin{equation*}
\mu+k w_{k}>\sum_{i=1}^{k} w_{i} \tag{18}
\end{equation*}
$$

Obviously, this holds for $k=1$, because $\mu>0$. A crucial observation is that if (18) does not hold for some $k$, then it does also not hold for larger values of $k$. Moreover, if it holds for some $k$, then testing (18) for $k+1$ amounts to a comparison of $\mu+(k+1) w_{k+1}$ and $\sum_{i=1}^{k} w_{i}+w_{k+1}$, which requires $O(1)$ operations. Hence, the largest $k$ satisfying (18) can be found in $O(k)$ time. We then know the index set $I$ and hence we can compute $\xi$ and then $u_{i}$, for $i \leq k$. We conclude that if $w$ is ordered as in (15), then the solution of (10) requires only $O(n)$ time.

The above reasoning uses the fact that the vector $w$ is already ordered in nonincreasing order; to get $w$ ordered in this way, takes $O(n \log n)$ time. Thus, it follows that problem (11), and also (10), can be solved in $O(n \log n)$ time. The computation of $z$ requires $O\left(n^{2}\right)$ time, which dominates the time for ordering $w$. Hence, solving problem (4) requires $O\left(n^{2}\right)$ time. As a consequence, the overall time complexity of BP becomes $O\left(n L \cdot n \sqrt{n} \cdot n^{2}\right)=O\left(n^{4.5} L\right)$ time.

## References

[1] Chubanov, S. (2015), A polynomial projection algorithm for linear feasibility problems, Mathematical Programming, 153(2), 687-713.
[2] Khachiyan, L. G. (1979), A polynomial algorithm in linear programming, Doklady Academii Nauk SSSR, 244:1093-1096. Translated into English in Soviet Mathematics Doklady 20:191-194.
[3] Nesterov, Y. (2005), Excessive gap technique in nonsmooth convex minimization, SIAM Journal on Optimization, 16(1), 235-249.
[4] Peña, J., and Soheili, N. (2016), A deterministic rescaled perceptron algorithm, Mathematical Programming, 155(1-2), 497-510.
[5] Roos, K. (2018), An improved version of Chubanov's method for solving a homogeneous feasibility problem, Optimization Methods and Software, 33(1), 26-44.
[6] Wei, Z. and Roos, K. (2019), Using Nemirovski's Mirror-Prox method as Basic Procedure in Chubanov's method for solving homogeneous feasibility problems, Manuscript (http://www.optimization-online.org/DB HTML/2018/04/6559.html).


[^0]:    * Corresponding Author.

    1 National University of Singapore, Singapore, Email: lindelfeel@gmail.com.
    2 Department of Electrical Engineering, Computer Science and Mathematics, Delf University of Technology, Delf, The Netherlands, Email: c.roos@tudelf.nl.

[^1]:    ${ }^{3}$ There is also a 'proof' of this statement in [5], but unfortunately there is a gap in that proof that has been overlooked.

