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Here, a novel scenario-based two-level inventory control model with a limited budget is formulated. 

The demand during the selling period is considered to follow a uniform probability distribution. It 

is assumed that there will be some customers who are willing to wait for their demands to be 

satisfied; thus, a service level is considered for these customers. The aim is to find the optimal order 

quantities of the products and the required raw materials at the beginning of the selling period such 

that the relevant expected total profit obtained during the period is maximized. A penalty function 

along with a barrier method is proposed to solve the developed nonlinear stochastic programming 

problem. The problem is solved under different scenarios including good, fair, and low demands. 

Finally, a case study in a dairy manufacturing company is provided to illustrate the application of 

the proposed methodology in real-world inventory control systems.  
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1. Introduction 

 

On time delivery of quality products in proper quantities to the customers is a fundamental aim of 

any manufacturing company working in today’s global market. However, the uncertainty involved in 

demand is a major problem the companies face with to increase service level and to decrease cost. 

One of the most popular approaches used by companies to control the demand uncertainty during the 

selling period is the so-called newsvendor modeling devised for the single-period inventory control 

problems. In this approach, a prior knowledge of demand variations is required to prepare products 

before the selling period. The newsvendor model was firstly introduced by Hadley and Whitin [1] 

with the extensions provided by Silver et al. [2] and Khouja [3] later on. As the selling process became 

more complex, further extensions of the model involving service level, lost sales, salvage value, 

emergency order, risk and many other interesting parameters were proposed by various researchers 

in the literature. 

 

The present study considers the single-period inventory control problem as a two-level model in 

which the vendor procures raw materials and converts a certain amount of the raw materials into final 

products before the selling season starts. As the cost of the raw materials left at the end of the period 
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is lower than that of the products, it is more appropriate for the vendor to have some raw materials 

remained at the end of the selling period, although it is ideal for the vendor to sell out all the purchased 

raw materials and products with the highest profit and least lost sales. When the demand during the 

selling period exceeds the stocked products, it is assumed that the vendor turns a part of the raw 

materials into the final products. As this transformation is time-consuming, some customers cannot 

wait and at least some impatient customers’ demands will be lost. Therefore, the vendor should decide 

how much raw material and products to be stocked at the beginning of the period in order to maximize 

the profit. Similar to all newsvendor models, in our work here, the vendor predicts the sale quantity 

before the beginning of the selling season using the historical demand data and prepares raw materials 

and products according to this prediction. More specifically, a scenario-based two-level single-period 

inventory problem under a limited budget is investigated in an attempt to examine the influence of 

the demand prediction on the newsvendor’s profit. The modeling and the solution approach proposed 

here are applicable in different real-world systems such as inventory systems of multi-echelon supply 

chains, spare part distribution systems, food industries and in general in any inventory control system 

involving products and raw materials. In short, our main contributions are: 

 

1. A new model is developed to enable the newsvendor to compare her decision under 

different scenarios.  

2. When the demand during the selling period exceeds the stored products at the beginning 

of the period, a re-production during the period is allowed for those customers who are 

willing to wait to receive their products. 

3. A stochastic optimization approach is taken to deal with uncertain demand in order to 

investigate the effect of demand prediction on the total expected profit. In other words, 

different cases (demand scenarios) are considered to investigate their effects on the 

newsvendor expected profit. 

 

2. Literature Review 
 

Several extensions of the single-period (newsvendor) problem have been proposed in the 

literature, since the pioneering work of Hadley and Whitin [1] was introduced for a single product. 

Vairaktarakis [4] investigated a multi-item newsboy problem with a budget constraint and made a 

single-period stocking decision prior to realizing the demand for all items. Abdel-Malek et al. [5] 

developed a multi-product newsvendor model with budget limitation and proposed an exact solution 

approach when the demand follows a uniform distribution. Later, their work was extended by Abdel-

Malek and Montanari [6] for a multi-product newsboy problem with the budget constraint assumed 

in three ranges of large, medium and very tight. Some numerical examples were solved to illustrate 

the application of the proposed procedures. Mostard and Teunter [7] analyzed a newsvendor problem 

with resalable returns, assuming that all unsatisfied demands were lost. They derived a simple closed-

form equation to determine the optimal order quantity given the demand distribution, the probability 

that a sold product was returned and all relevant revenues and costs. Abdel-Malek and Areeratchakul 

[8] devised a quadratic programming solution approach for a multi-product newsvendor problem with 

side constraints. Their model considers a lower bound on the demand and is suitable to conduct 

sensitivity analysis to allow for adjusting the available resources when necessary. Niederhoff [9] 

proposed an approximating programming technique to solve a multi-product newsvendor problem 

with independent products demands. He found the optimal solution for any demand distribution using 

a convex separable program. Panda et al. [10] developed a mathematical model for a single-period 

multi-product manufacturing system consisting of stochastically imperfect items with a continuous 

stochastic demand under budget and shortage constraints. They solved their problem using a 

nonlinear optimization technique called the generalized reduced gradient method. Zhang and Hua 
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[11] established the structural properties for the optimal decisions of their proposed profit-

maximization model, in which the procurement strategy for newsboy product was designed as a 

portfolio contract. They proposed an efficient algorithm to solve the problem. Huang et al. [12] 

studied a multi-product competitive newsvendor problem with shortage penalty cost and partial 

product substitution. They devised an iterative algorithm on the basis of approximating the effective 

demand as well as the expected profit function for each product. Performing sensitivity analysis, 

Khanra et al. [13] identified conditions for symmetry and skewness of the cost deviation and 

established a lower bound on the cost deviation for a symmetric unimodal demand distribution. 

Recently, Kim et al. [14] introduced a multi-period newsvendor problem and formulated it as a multi-

stage stochastic programming model with integer recourse decisions. 

 

To name a few works on the two-level inventory control problem, Axsäter [15] extended a new 

model in two ways: first he provided a complete probability distribution for the retailer inventory 

levels, and second he generalized the case from having Poisson demands to compound Poisson 

demands. He determined the distribution of the inventory levels at the retailers in the steady state. 

Tee and Rossetti [16] developed a robust version of a standard model for a two-echelon inventory 

system proposed by Axsäter [15]. They concluded that their model performed well at the low demand 

and large retailer order batch size situation. For a single-item, two-echelon, continuous-review 

inventory model, Hill et al. [17] assumed a number of retailers to have stock replenished from a 

central warehouse and the demand processes on the retailers to be independent Poisson. They 

presented a means of studying the steady-state behavior of a multi-level batch ordering model which, 

on the basis of simulation results, provided very accurate answers. Pasandideh et al. [18] proposed a 

new model for a two-echelon inventory control system for a non-repairable item where the system 

consisted of one warehouse and m identical retailers. They solved their nonlinear integer-

programming problem using a parameter-tuned genetic algorithm. Tsai and Zheng [19] presented a 

simulation optimization algorithm to solve a two-echelon constrained inventory control problem. 

They determined the optimal setting of stocking levels to minimize the total inventory investment 

costs while satisfying the expected response time targets for each field depot. They showed that their 

proposed algorithm required less simulation effort to guarantee to achieve a better solution than the 

ones obtained by other existing approaches. Alvarez and van der Heijden [20] considered a two-

echelon supply chain system under Poisson demand with a one-for-one replenishment policy. They 

assumed that the demand was lost if no items were available at the local warehouse, central depot or 

in the pipeline in between. In order to approximate the service level, they proposed a simple and fast 

approach. Recently, Priyan and Uthayakumar [21] proposed a two-echelon multi-product multi-

constraint product returns inventory model with a permissible delay in payments. A distributor and a 

warehouse consisting of a serviceable part and a recoverable part were considered in their work. They 

showed that the model of their problem was a constrained nonlinear programming one and solved it 

using the Lagrangian relaxation method. Keramatpour et al. [22] developed a new model for the two-

level newsvendor problem with budget constraint. They considered a service level for customers and 

solved their problem using meta-heuristic algorithms. 

 

The rest of our work is organized as follows. The problem statement, the assumptions involved, 

and the notation are presented in Section 3. In Section 4, the problem is modeled. Under a uniform 

distribution of the demand a real case-study is investigated in Section 5 to demonstrate the application 

of the proposed approach. The convexity proof and the obtained results are provided in Section 6. 

Finally, the conclusion and future research directions are presented in Section 7. Some necessary 

mathematical derivations are given in Appendices A and B.  
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3. Problem Statement 
 

A single-item single-period two-level inventory control problem with a limited budget is 

investigated. Similar to the classical newsvendor problem, the demand is a random variable and 

shortage is allowed in the form of lost sales. It is assumed that when the demand during the selling 

period exceeds the stocked products at the beginning of the period, the newsvendor turns a part of the 

raw materials into the final products. However, as turning the raw materials into the final products is 

time-consuming, all customers cannot wait. As a result, some of the impatient customers’ demands 

will be lost. Therefore, the newsvendor should decide how much raw materials and products to 

prepare at the beginning of the selling period in order to maximize her profit. Although some 

researchers such as Serel [23] and Karimi et al. [24] considered this special case as the so-called 

“emergency order,” the approach taken here is different. Here, the demand is a random variable and 

shortage is permitted. As such, the newsvendor profit is directly affected by the actual demand 

happening during the period. It is obvious that in the newsvendor problem, the final product inventory 

is prepared at the beginning of the period based on the predicted demand. So, the demand pattern of 

the final product should be analyzed in depth to maximize the newsvendor’s expected profit. To this 

aim, three scenarios including good, fair, and low are assumed for the product demand. The 

newsvendor decides how much products and raw materials should be prepared at the beginning of the 

period under different scenarios. The first major contribution of our work is to develop a new 

modeling for a two-level inventory control problem. A real-world case is provided to show the 

efficiency of the developed model. Our second major contribution is the proposed solution method. 

An exact solution method rarely used by researchers is presented. 

 

3.1. Assumptions and Notations 

 

As stated before, it is assumed that the newsvendor prepares raw materials and final products just 

before the beginning of the selling period. If the customers are willing to wait for their products in 

case a shortage happens during the period, i.e. the demand during the period exceeds the prepared 

products, then the vendor produces products using raw materials, each with a different usage 

coefficient.  

 

In general, the following assumptions are made: 

 

1. There is only a single type of product for sale during the period. 

2. There is a limited budget available to purchase raw materials and to transform them into 

final products just before the beginning of the selling period. 

3. A product is produced using raw materials with different usage coefficients. 

4. Raw materials can be stocked just once before the beginning of the selling period. 

5. Products are produced and stocked before the selling period. 

6. If the demand during the period exceeds the already stocked products at the start of the 

selling period, then some customers wait for their orders to get ready for delivery. 

7. In addition to the products that are prepared prior to the selling period, some products can 

be prepared and delivered during the period for customers who are willing to wait for their 

orders to be met. 

8. Shortage is considered as lost sale. 

9. Excess products and raw materials left at the end of the period are sold at a lower price. 

10. As revenue is obtained by selling products within the period, no budget constraint is 

considered for the transformation of raw materials into final products during the period. 
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11. The demand for the product is assumed to follow a discrete set of three scenarios: good, 

fair, and low. 

12. The demand quantity does not affect the price of the products. 

 

3.2. Notations 

 

The following indices, parameters, and decision variables are used throughout the paper. 

 

3.2.1. Indices  

 

𝑖 = index used for a raw material (𝑖 = 1, 2, 3, … , 𝐼) 
𝑠 = index used for a demand scenario (𝑠 = 1, 2, 3) 
 

3.2.2. Parameters 

 

𝑇 =  Unit cost of transforming raw materials into products   

𝛾𝑖 = Consumption rate of 𝑖th raw material in products  

𝐶𝑖 = Unit purchasing cost of raw material 𝑖 needed to produce one unit of the finished product   

𝐷𝑖 = Unit discounted sale price of 𝑖th raw material left at the end of the selling period 

𝐷′ = Unit discounted sale price of the product remained at the end of the selling period 

𝐻𝑖 = Holding cost per unit time of 𝑖th raw material 

𝐻′ = Holding cost per unit time of the product 

𝑃 = Selling price per unit of the product  

𝜇 = Service level or a percentage of the customers willing to wait (if the product is sold out during 

the selling period) 

𝜋 = shortage cost per unit of the products  

𝑥𝑆 = Customers’ demand for the products in scenario 𝑠 (a random variable) 

𝑓𝑋(𝑥𝑆) = Probability density function of the demand in scenario 𝑠 
𝐹𝑋(𝑥𝑆) = Cumulative probability distribution function of the demand in scenario 𝑠 
𝐵 = available budget to purchase raw materials and to transfer them into the final product 

𝑝𝑆 = probability of scenario s to happen (0 < 𝑝𝑆 < 1) 
 

3.2.3. Decision Variables 

 

𝑄𝑅,𝑆 = Quantity of the raw materials purchased before the beginning of the selling period for 

scenario-𝑠 demand 

𝑄𝐹,𝑆 = Quantity of the final product stocked just before the beginning of the selling period for 

scenario-𝑠 demand. 

 

Note that the maximum number of products one can manufacture from 𝑄𝑅,𝑆 with the raw material 

consumption rates 𝛾𝑖 is 𝑄𝐹,𝑆
+ , i.e., 𝑄𝐹,𝑆

+ = min
i
(
𝑄𝑅,𝑆

 𝛾𝑖
). After solving the problem and obtaining the 

optimal solution for 𝑄𝑅,𝑆, the quantity of the i-th raw material is easily obtained by  𝛾𝑖𝑄𝑅,𝑆. 
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4. Mathematical Formulation 

 

Given the assumptions and notations, the product demand during the selling period in each scenario 

happens to fall within the following three states. 

 

State 1: Product demand is not bigger than the quantity of the products prepared before the period, 

i.e. 𝑥𝑆 ≤ 𝑄𝐹,𝑆. In this case, products are partially sold and fractions of products alongside 

the raw materials that are not used in production are sold at lower prices at the end of the 

period. 

State 2: All products prepared before the selling period are sold out during the period, i.e., 𝑥𝑆 ≥
𝑄𝐹,𝑆. In this case, fractions of raw materials are transformed into the products during the 

selling period and the remaining products are sold at lower prices at the end of the period. 

Moreover, the demands of some impatient customers who cannot wait are lost. Note that in 

this case (𝑥𝑆 − 𝑄𝐹,𝑆 ) ≤ 𝑄𝐹,𝑆
+ , and hence 𝑄𝐹,𝑆 ≤ 𝑥𝑆 ≤ 𝑄𝐹,𝑆

+ /𝜇 . 

State 3: All products and raw materials prepared before the selling period are sold out, i.e. the 

product demand is greater than the quantity of all products prepared at the beginning of the 

selling period and that the number of customers who are willing to wait for their demands 

be met is so high that all the procured raw materials at the start of the period are transformed 

into the products during the period. In this case, no products and raw materials remain at 

the end of the period to be sold at lower prices and the vendor will just have some lost sales. 

Thus, we have 𝑄𝐹,𝑆 + 𝑄𝐹,𝑆
+ /𝜇 ≤ 𝑥𝑆. 

 

Figure 1 depicts a summary of the above three states. 

 

Using the above assumptions, the costs and the incomes in each state are as follows. 

 

State 1: 

Income includes the sale of a fraction of products that is equal to the quantity of the demand plus 

sale of the remaining raw materials plus the sale of the remaining products at the end of the period at 

lower prices. In other words, 

 

𝐼𝑛𝑐𝑜𝑚𝑒1 = 𝑃(𝑥𝑠) +∑𝐷𝑖(𝑄𝑅,𝑆) + 𝐷
′(𝑄𝐹,𝑆 − 𝑥𝑆)

𝐼

𝑖=1

. (1) 

     
Costs include the purchasing cost of raw materials plus the transformation cost of raw materials 

into products plus the holding costs of raw materials along with the holding cost of a fraction of 

products until the end of the period, that is, 

 

𝐶𝑜𝑠𝑡1 =∑𝐶𝑖(𝑄𝑅,𝑆) + (𝑇 +∑𝐶𝑖

𝐼

𝑖=1

)

𝐼

𝑖=1

𝑄𝐹,𝑆 +∑𝐻𝑖(𝑄𝑅,𝑆) + 𝐻
′(𝑄𝐹,𝑆 − 𝑥𝑆)

𝐼

𝑖=1

. (2) 

 

Note that 𝑄𝑅,𝑆 
is the number of raw materials purchased at the beginning of the period that is used 

to produce the products during the selling period if required. The cost of raw materials used in the 

product (𝑄,𝑆) at the beginning of the period is considered separately. Then, the newsvendor’s expected 

profit is obtained using (3) below, given the demand scenario: 
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𝑃𝑟𝑜𝑓𝑖𝑡1 = ∅1 = ∫ (𝐼𝑛𝑐𝑜𝑚𝑒1 − 𝐶𝑜𝑠𝑡1)𝑓𝑋(𝑥𝑆)
𝑄𝐹,𝑆

0

𝑑𝑥𝑆. (3) 

 

State 2: 

Income includes the sale of all products plus sale of a fraction of the products produced during the 

period plus the sale of raw materials left at the end of the period at a lower price. In other words, 

 

𝐼𝑛𝑐𝑜𝑚𝑒2 = 𝑃(𝑄𝐹,𝑆) + 𝑃(𝜇)(𝑥𝑆 − 𝑄𝐹,𝑆) +∑𝐷𝑖[𝑄𝑅,𝑆 − 𝛾𝑖(𝜇)(𝑥𝑆 − 𝑄𝐹,𝑆)]

𝐼

𝑖=1

, (4) 
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where the last term on the right-hand-side of (4) is constrained to be non-negative as a constraint of 

the problem (see Equation (11) as given later). 

 

Costs include the purchasing cost of raw materials plus the transformation cost of raw materials 

into the products at the start of the period plus the transformation cost of raw materials during the 

period plus the lost cost of impatient customers who cannot wait plus the holding cost of raw materials 

until the end of the period, that is, 

 

𝐶𝑜𝑠𝑡2 =∑𝐶𝑖(𝑄𝑅,𝑆) + (𝑇 +∑𝐶𝑖

𝐼

𝑖=1

)𝑄𝐹,𝑆 + 𝑇(𝜇)(𝑥𝑆 − 𝑄𝐹,𝑆) + 𝜋(1 − 𝜇)(𝑥𝑆 − 𝑄𝐹,𝑆)

𝐼

𝑖=1

 

+∑𝐻𝑖[𝑄𝑅,𝑆 − 𝛾𝑖(𝜇)(𝑥𝑆 − 𝑄𝐹,𝑆)]

𝐼

𝑖=1

.                                                               

 

(5) 

 

Then, 𝑃𝑟𝑜𝑓𝑖𝑡2, added to 𝑃𝑟𝑜𝑓𝑖𝑡1, that may be obtained in (𝑄𝐹,𝑆, 𝑄𝐹,𝑆 + 𝑄𝐹,𝑆
+ /𝜇), becomes 

  

𝑃𝑟𝑜𝑓𝑖𝑡2 = ∅2 = ∫ (𝐼𝑛𝑐𝑜𝑚𝑒2 − 𝐶𝑜𝑠𝑡2)𝑓𝑋(𝑥𝑆)𝑑𝑥𝑆

𝑄𝐹,𝑆+
𝑄𝐹,𝑆
+

𝜇

𝑄𝐹,𝑆

. 
(6) 

 

Note that in (6), if all the customers can wait, i.e. 𝜇 = 1, and if the consumption rates of raw 

materials are all equal to 1, i.e. , 𝛾𝑖 = 1, then all the products and raw materials are sold out and the 

interval of the integration will change from 𝑄𝐹,𝑆 to 𝑄𝐹,𝑆 + 𝑄𝑅,𝑆. This means that the demand that 

exceeds the quantity of the prepared products is at most as high as all prepared the products at the 

beginning of the period plus the quantity produced during the period using the raw materials provided 

at the start of the period. 

 
State 3: 

Income includes sales of all the prepared products at the beginning of the period plus the sale of 

all the products produced from raw materials during the period. In other words 

 

𝐼𝑛𝑐𝑜𝑚𝑒3 = 𝑃(𝑄𝐹,𝑆 + 𝑄𝐹,𝑆
+ ). (7) 

 

Costs include the purchasing cost of raw materials plus the transformation cost of raw material 

into the products plus the transformation of the raw material into the products during the selling period 

given the consumption factor plus the loss of impatient customers who cannot wait. In other words, 

 

𝐶𝑜𝑠𝑡3 =∑𝐶𝑖(𝑄𝑅,𝑆) + (𝑇 +∑𝐶𝑖

𝐼

𝑖=1

)𝑄𝐹,𝑆 + 𝑇(𝑄𝐹,𝑆
+ ) + 𝜋(𝑥𝑆 − 𝑄𝐹,𝑆 − 𝑄𝐹,𝑆

+ ).

𝐼

𝑖=1

  (8) 
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In this state, the newsvendor’s expected profit is obtained by (9) below based on the demand 

interval: 

 

𝑃𝑟𝑜𝑓𝑖𝑡3 = ∅3 = ∫ (𝐼𝑛𝑐𝑜𝑚𝑒3 − 𝐶𝑜𝑠𝑡3)𝑓𝑋(𝑥𝑆)𝑑𝑥𝑆

∞

𝑄𝐹,𝑆+
𝑄𝐹,𝑆
+

𝜇

. 
(9) 

 

Based on the expected profits obtained for states 1-3 in (3), (6), and (9) respectively, the 

newsvendor’s expected profit is derived by 𝑍 = (∅1 + ∅2 + ∅3). This profit is aimed to be 

maximized within the budget constraint as 

 

∑𝐶𝑖(𝑄𝑅,𝑆) + (𝑇 + 𝑄𝐹,𝑆) ≤ 𝐵.

𝐼

𝑖=1

 (10) 

 

The inequality (10) shows that the purchasing and the transformation costs of raw materials into 

the products cannot exceed the available budget before the selling period. Note that as the revenue is 

obtained by selling the products within the period, no budget constraint is assumed to transform raw 

materials into the products during the period. Moreover, the total quantity of the products to be 

produced either at the start or within the selling period cannot exceed the potential number of products 

that can be produced using the raw materials based on their consumption factor. In other words, 

 

[𝑄𝐹.𝑆 + 𝜇(𝑥𝑆 − 𝑄𝐹,𝑆)] ≤
𝑄𝑅,𝑆
𝛾𝑖
. (11) 

 

In short, the mathematical formulation of the problem at hand is 

 

max𝑍 = (∅1 + ∅2 + ∅3) 
s. t. 

(1) ∅1 = ∫ (𝐼𝑛𝑐𝑜𝑚𝑒1 − 𝐶𝑜𝑠𝑡1)𝑓𝑋(𝑥𝑆)𝑑𝑥𝑆

𝑄𝐹,𝑆

0

 

(2) ∅2 = ∫ (𝐼𝑛𝑐𝑜𝑚𝑒2 − 𝐶𝑜𝑠𝑡2)𝑓𝑋(𝑥𝑆)𝑑𝑥𝑆

𝑄𝐹,𝑆+
𝑄𝐹,𝑆
+

𝜇

𝑄𝐹,𝑆

 

(3) ∅3 = ∫ (𝐼𝑛𝑐𝑜𝑚𝑒3 − 𝐶𝑜𝑠𝑡3)𝑓𝑋(𝑥𝑆)𝑑𝑥𝑆

∞

𝑄𝐹,𝑆+
𝑄𝐹,𝑆
+

𝜇

 

(4)∑𝐶𝑖(𝑄𝑅,𝑆) + (𝑇 + 𝑄𝐹,𝑆) ≤ 𝐵

𝐼

𝑖=1

  

(5) [𝑄𝐹,𝑆 + 𝜇(𝑥𝑆 − 𝑄𝐹,𝑆)] ≤
𝑄𝑅,𝑆
𝛾𝑖

 

𝑄𝐹,𝑠. 𝑄𝑅,𝑆 > 0, ∀ 𝑆 = 1, 2, 3. 

(12) 

           

where the 𝐼𝑛𝑐𝑜𝑚𝑒𝑠 and the Costs in States 1-3 have been obtained previously. In the above model, 

the last constraint shows that the quantities of raw materials and products must be positive. It should 
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be mentioned that the above model can be easily extended to a multi-product case by adding a new 

index for each product in all the necessary parameters.  

 

4.1. Case of Uniform Distribution of the Demand 

 

As used in previous studies, a uniform probability distribution in the interval [𝑎. 𝑏]is a proper 

choice for probable values of the random demand between a and b (Wanke [25]). This is also suitable 

for new products whose demand is unknown. The properties of a uniform distribution allow one to 

obtain a maximum and a minimum value as simple estimations of the newsvendor’s expected profit.  

 

Stochastic programming deals with situations where some or all of the parameters of the 

optimization problem are considered to be stochastic rather than deterministic quantities. In this 

section, the demand for the product is assumed to be a random variable X that follows a uniform 

distribution in the interval [𝑎. 𝑏]. As the problem is examined using a scenario-based approach, the 

probability distribution of the demand under scenario s , i.e. 𝑥𝑆 , is: 

 

𝑓(𝑥𝑆) = {

1

𝑏𝑆 − 𝑎𝑆
,    if 𝑎𝑆 ≤ 𝑥𝑆 ≤ 𝑏𝑆

0,                  otherwirse.    

        with 0 ≤ 𝑎𝑆 ≤ 𝑏𝑆 (13) 

 
Given the objective function presented in the previous section and the probability density function 

of the demand given by (13), the mathematical formulation of the expected profit for each state 

follows. Note that the expected profit in each state is used in the integration first. Then, the start and 

the endpoints of the integral are applied to evaluate the expected profit. 

 

State 1: 

∅1 =

(

 
 
 
 
 

{
1

2
𝑃(𝑥𝑆

2) + 𝑥𝑆∑𝐷𝑖(𝑄𝑅.𝑆) + 𝑥𝑆(𝐷
′) (𝑄𝐹.𝑆 −

1

2
𝑥𝑆)

𝐼

𝑖=1

}

−

{
 
 

 
 𝑥𝑆∑𝐶𝑖(𝑄𝑅.𝑆) + 𝑥𝑆 (𝑇 +∑𝐶𝑖

𝐼

𝑖=1

)𝑄𝐹.𝑆 + 

𝐼

𝑖=1

𝑥𝑆∑𝐻𝑖(𝑄𝑅.𝑆) +

𝐼

𝑖=1

𝑥𝑆(𝐻
′) (𝑄𝐹.𝑆 −

1

2
𝑥𝑆) }

 
 

 
 

)

 
 
 
 
 

0

𝑄𝐹.𝑆

1

𝑏𝑆 − 𝑎𝑆
 

=

(

 
 
 
 
 

{
1

2
𝑃(𝑄𝐹.𝑆

2 ) + 𝑄𝐹.𝑆∑𝐷𝑖(𝑄𝑅.𝑆) +
1

2
(𝐷′)𝑄𝐹.𝑆

2

𝐼

𝑖=1

}

−

{
 
 

 
 
𝑄𝐹.𝑆∑𝐶𝑖(𝑄𝑅.𝑆) + 𝑄𝐹.𝑆

2 (𝑇 +∑𝐶𝑖

𝐼

𝑖=1

) + 

𝐼

𝑖=1

𝑄𝐹.𝑆
2 ∑𝐻𝑖(𝑄𝑅.𝑆) +

𝐼

𝑖=1

1

2
(𝐻′)(𝑄𝐹.𝑆

2 )
}
 
 

 
 

)

 
 
 
 
 

1

𝑏𝑆 − 𝑎𝑆
 

 

(14) 
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State 2: 

∅2 = 𝑥𝑆

(

 
 
 
 
 
 
 
 

{
 
 

 
 (𝑃)(𝑄𝐹.𝑆) + (𝑃)(𝜇) (

1

2
𝑥𝑆 − 𝑄𝐹.𝑆) +

∑𝐷𝑖 [𝑄𝑅.𝑆 − 𝛾𝑖(𝜇) (
1

2
𝑥𝑆 − 𝑄𝐹.𝑆)]

𝐼

𝑖=1 }
 
 

 
 

−

{
 
 

 
 ∑𝐶𝑖(𝑄𝑅.𝑆) + (𝑇 +∑𝐶𝑖

𝐼

𝑖=1

)𝑄𝐹.𝑆 + (𝑇)(𝜇) (
1

2
𝑥𝑆 − 𝑄𝐹.𝑆) 

𝐼

𝑖=1

+𝜋(1 − 𝜇) (
1

2
𝑥𝑆 − 𝑄𝐹.𝑆) +∑𝐻𝑖 [𝑄𝑅.𝑆 − 𝛾𝑖(𝜇) (

1

2
𝑥𝑆 − 𝑄𝐹.𝑆)]

𝐼

𝑖=1 }
 
 

 
 

)

 
 
 
 
 
 
 
 

𝑄𝐹.𝑆

𝑄𝐹.𝑆+
𝑄𝐹.𝑆
+

𝜇

 

1

𝑏𝑆 − 𝑎𝑆
 

=

(

 
 
 
 
 
 
 
 
 
 
 

{
 
 

 
 𝑃(𝑄𝐹.𝑆) + 𝑃(𝜇) (

1

2
(𝑄𝐹.𝑆 +

𝑄𝐹.𝑆
+

𝜇
) − 𝑄𝐹.𝑆)

+∑𝐷𝑖 [𝑄𝑅.𝑆 − 𝛾𝑖(𝜇) (
1

2
(𝑄𝐹.𝑆 +

𝑄𝐹.𝑆
+

𝜇
) − 𝑄𝐹.𝑆)]

𝐼

𝑖=1 }
 
 

 
 

−

{
 
 
 
 

 
 
 
 ∑𝐶𝑖(𝑄𝑅.𝑆)

𝐼

𝑖=1

+ (𝑇 +∑𝐶𝑖

𝐼

𝑖=1

)𝑄𝐹.𝑆 + (𝑇)(𝜇) (
1

2
(𝑄𝐹.𝑆 +

𝑄𝐹.𝑆
+

𝜇
) − 𝑄𝐹.𝑆)

+𝜋(1 − 𝜇) (
1

2
(𝑄𝐹.𝑆 +

𝑄𝐹.𝑆
+

𝜇
) − 𝑄𝐹.𝑆)

+∑𝐻𝑖 [𝑄𝑅.𝑆 − 𝛾𝑖(𝜇) (
1

2
(𝑄𝐹.𝑆 +

𝑄𝐹.𝑆
+

𝜇
) − 𝑄𝐹.𝑆)]

𝐼

𝑖=1 }
 
 
 
 

 
 
 
 

)

 
 
 
 
 
 
 
 
 
 
 

 

(𝑄𝐹.𝑆 +
𝑄𝐹.𝑆
+

𝜇
)

1

𝑏𝑆 − 𝑎𝑆
 

−

(

 
 
 
 
 
 
{𝑃(𝑄𝐹.𝑆) + 𝑃(𝜇) (

1

2
(𝑄𝐹.𝑆) − 𝑄𝐹.𝑆) +∑𝐷𝑖 [𝑄𝑅.𝑆 − 𝛾𝑖(𝜇) (

1

2
(𝑄𝐹.𝑆) − 𝑄𝐹.𝑆)]

𝐼

𝑖=1

}

−

{
 
 

 
 ∑𝐶𝑖(𝑄𝑅.𝑆)

𝐼

𝑖=1

+ (𝑇 +∑𝐶𝑖

𝐼

𝑖=1

)𝑄𝐹.𝑆 + (𝑇)(𝜇) (
1

2
(𝑄𝐹.𝑆) − 𝑄𝐹.𝑆) +

𝜋(1 − 𝜇) (
1

2
(𝑄𝐹.𝑆) − 𝑄𝐹.𝑆) +∑𝐻𝑖 [𝑄𝑅.𝑆 − 𝛾𝑖(𝜇) (

1

2
(𝑄𝐹.𝑆) − 𝑄𝐹.𝑆)]

𝐼

𝑖=1 }
 
 

 
 

)

 
 
 
 
 
 

 

(𝑄𝐹.𝑆)
1

𝑏𝑆 − 𝑎𝑆
 

(15) 
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State 3: 

∅3 = 𝑥𝑆

(

 
 
 

{(𝑃)(𝑄𝐹.𝑆) + (𝑃)(𝑄𝐹.𝑆
+ )}

−

{
 
 

 
 ∑𝐶𝑖(𝑄𝑅.𝑆) + (𝑇 +∑𝐶𝑖

𝐼

𝑖=1

)𝑄𝐹.𝑆 + (𝑇)(𝑄𝐹.𝑆
+ ) 

𝐼

𝑖=1

+𝜋 (
1

2
𝑥𝑆 − 𝑄𝐹.𝑆 −𝑄𝐹.𝑆

+ )
}
 
 

 
 

)

 
 
 

𝑄𝐹.𝑆+
𝑄𝐹.𝑆
+

𝜇

𝑏𝑆

1

𝑏𝑆 − 𝑎𝑆
 

=

(

 
 
 
 

𝑃(𝑄𝐹.𝑆 + 𝑄𝐹.𝑆
+ ) −

{
 
 

 
 ∑𝐶𝑖(𝑄𝑅.𝑆)

𝐼

𝑖=1

+ (𝑇 +∑𝐶𝑖

𝐼

𝑖=1

)𝑄𝐹.𝑆 + (𝑇)(𝑄𝐹.𝑆
+ )

+𝜋 (
1

2
(𝑄𝐹.𝑆 +

𝑄𝐹.𝑆
+

𝜇
) − 𝑄𝐹.𝑆 − 𝑄𝐹.𝑆

+ )

}
 
 

 
 

)

 
 
 
 

 

(𝑄𝐹.𝑆 +
𝑄𝐹.𝑆
+

𝜇
)

1

𝑏𝑆 − 𝑎𝑆
 

(16) 

 

4.2. Solution Approach 

 

Here, the steps involved in the solution approach are given below: 

  

Step 1.  Given the parameters, check for the convexity of the maximization problem modeled in (12) 

using the first partial derivative, the second partial derivative, and the Hessian of the second partial 

derivative of the objective function with respect to the decision variables. 

 

Step 2. If the convexity does not hold, then a meta-heuristic solution algorithm is needed to solve the 

problem in order to find a near optimal solution. Otherwise, go to Step 3. 

 

Step 3. Find an initial feasible point using a penalty function method, i.e., a point that satisfies the 

first two constraints. The penalty function method ignores the objective function entirely by replacing 

the constraints for the objective function. 

 

Step 4. Transform the constrained optimization problem in (12) to an unconstrained nonlinear 

optimization problem using a barrier method. Here, the barrier method is employed to avoid 

approaching an infeasible point (Bazaraa et al. [26]).  

 

Step 5. Use the sequential unconstrained maximization technique (SUMT) to solve the transformed 

problem (Bazaraa et al. [26]). In this method, the initial feasible point iteratively converges to the 

optimal solution using the Newton-Raphson method. 

 

Step 6. The solution approach discussed above applies to a deterministic constrained non-linear 

optimization problem. However, as the problem modeled in (17) is stochastic, three common 

stochastic optimization procedures, namely “wait and see (WS),” “expected value (EV),” and “here 

and now” or “resource problem (RP)” are used (Birge and Louveaux [27]).  
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5. A Case Study 

 

A case study for a two-level single-period dairy product problem is presented in this section in 

order to demonstrate the application of the proposed methodology in real-world environments. The 

commodity under investigation is a special dessert produced by a relatively large dairy firm. This 

product has only a single-period 17-day opportunity to be sold. The firm needs to prepare the products 

along with some raw materials before the beginning of the selling period in order to be able to 

immediately produce the products during the period in case of excessive demands. There are 13 types 

of raw materials with various consumption rates required to produce the final product. The firm has 

a limited available budget to purchase raw materials and to transform them into the product. In short, 

similar to the problem modeled in previous sections, a two-level single-period problem is involved in 

which the final product is made by combining different raw materials with different consumption 

rates within a certain budget. The objective is to find the number of raw materials and final product 

needed to be purchased and stocked before the selling period so as to maximize the profit. As demand 

prediction plays a major role in single-period problems, the problem is solved under different demand 

scenarios of good, fair, and low. 

 

5.1. Data Sources 

 

Based on historical data available for the past 48 periods, uniform distributions have shown table 

good fits for the probability distributions of the demands in different scenarios. Table 1 presents the 

intervals of these scenarios where as and bs shows the start and the end of the intervals respectively 

for each scenario. The raw materials, consumption units, consumption rates, purchase price, 

discounted sale price, and holding costs of all raw materials are shown in Table 2. The discounted 

price of the product is assumed to be 60% of the selling price, while holding costs of the raw materials 

are 2% of their purchase prices. The selling price, shortage cost, holding cost of products, discounted 

sale price, and production costs are summarized in Table 3. The production cost includes direct labor 

cost, machinery overhead, and operation cost. Shortage cost is considered as lost sale. Since the profit 

margin of the product is 10% in this firm, the same is assumed for the shortage cost. Historical data 

in this firm shows that only 50% of the customers will wait for the preparation of the products in case 

of shortage and the rest will be lost. Thus, μ = 50%. Finally, the total available budget for the 

procurement and transformation of the raw material before the selling period is 150,000,000 currency 

units. 

 

Table 1. Intervals of demand scenarios for products  

Scenario Demand Interval 

 as bs 

Scenario 1 (Good) 38,000 55,000 

Scenario 2 (Fair) 32,000 53,000 

Scenario 3 (Low) 29,000 50,000 
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Table 2. Raw material data 

i Raw Material Unit consumption rate 
purchasing 

cost 
Di Hi 

       

1 T Phosphate Kg 0.00027 10 6 0.2 

2 40% bulk cream Kg 0.036594 256 154 5.1 

3 PBSS starch Kg 0.0045 469 281 9.4 

4 Industrial zero fat milk Kg 0.22572 1,129 677 22.6 

5 Gelatin powder Kg 0.0027 674 404 13.5 

6 Pure salt Kg 0.00243 6 4 0.1 

7 C-Polar text 6748 Kg 0.0018 134 80 2.7 

8 5 layer Peace 0.00185185 22 13 0.4 

9 
Punched aluminum 

 foil 116 mm 
Peace 1 334 200 6.7 

10 
Printed Poly-styrene 

 116 mm cup 
Peace 1 1,511 907 30.2 

11 3.2% fat milk Kg 0.808209 1,010 606 20.2 

12 Termtex Latex 5625 starch Kg 0.0018 99 59 2.0 

13 C-polar Tex 06716 additive Kg 0.0018 108 65 2.2 

 

Table 3. Products  data 

P    H   D  T       

28,500 2,850 410 1,300 4,494 

 

5.2. Demand Scenarios 

 

Assuming good, fair, and low demand scenarios, the problem defined in the case study is solved 

under the same selling price for each scenario. Then, the scenario-based model is as follows: 

 

max𝑍𝑆 = (∅1,𝑆 + ∅2,𝑆 + ∅3,𝑆) 

s. t. 

(1) ∅1 = ∫ (𝐼𝑛𝑐𝑜𝑚𝑒1 − 𝐶𝑜𝑠𝑡1)𝑓𝑋(𝑥𝑆)𝑑𝑥𝑆

𝑄𝐹,𝑆

0

 

(2) ∅2 = ∫ (𝐼𝑛𝑐𝑜𝑚𝑒2 − 𝐶𝑜𝑠𝑡2)𝑓𝑋(𝑥𝑆)𝑑𝑥𝑆

𝑄𝐹,𝑆+
𝑄𝐹,𝑆
+

𝜇

𝑄𝐹,𝑆

 

(3) ∅3 = ∫ (𝐼𝑛𝑐𝑜𝑚𝑒3 − 𝐶𝑜𝑠𝑡3)𝑓𝑋(𝑥𝑆)𝑑𝑥𝑆

∞

𝑄𝐹,𝑆+
𝑄𝐹,𝑆
+

𝜇

 

(4)∑𝐶𝑖(𝑄𝑅,𝑆) + (𝑇 + 𝑄𝐹,𝑆) ≤ 𝐵

𝐼

𝑖=1

  

(5) [𝑄𝐹,𝑆 + 𝜇(𝑥𝑆 − 𝑄𝐹,𝑆)] ≤
𝑄𝑅,𝑆
𝛾𝑖

 

𝑄𝐹,𝑆, 𝑄𝑅,𝑆 ≥ 0.         ∀ 𝑆 = 1, 2, 3, 

(17) 

                                       



A Scenario-Based Nonlinear Programming Model 63 

 

 

where ∅1,𝑆, ∅2,𝑆, and ∅3,𝑆 are the first, the second, and the third state of profit under the 𝑠th scenario, 

respectively. As the three scenarios cannot occur at the same time, these scenarios are presented to 

show the demand variations and its effect on newsboy optimal solutions. 

 

6. Solution 
 

In order to solve the maximization problem shown in (17) using an exact method, it is necessary 

to first prove the convexity using the first and the second partial derivatives. Having the first partial 

derivatives of the objective function with respect to the decision variables in Appendix A, the second 

partial derivatives with respect to the decision variables are 

 

𝜕2𝑍

𝜕2𝑄𝐹,𝑆
= (−𝑃 −𝐻′ + 𝜋 + 𝐷′)

1

𝑏𝑠 − 𝑎𝑠
 

𝜕2𝑍

𝜕2𝑄𝑅,𝑆
= 2 ∗ [(

1

2
(𝑃 + 𝑇) +∑(𝐷𝑖 −𝐻𝑖) (1 −

𝛾𝑖
2
)

𝐼

𝑖=1

) − 𝑃] (
1

𝜇
)

1

𝑏𝑠 − 𝑎𝑠
 

𝜕2𝑍

𝜕𝑄𝐹,𝑆𝜕𝑄𝑅,𝑆
= (∑𝐷𝑖 −∑𝐻𝑖 − (𝑇 − 𝜋) − 𝑃

𝐼

𝑖=1

𝐼

𝑖=1

)
1

𝑏𝑠 − 𝑎𝑠
 

(18) 

 

Then, the Hessian matrix of the second derivatives that is a 2 × 2 matrix with two decision 

variables including 𝑄𝐹,𝑆 and 𝑄𝑅,𝑆 is obtained to be 

 

𝐻𝑠 =

[
 
 
 
 

𝜕2𝑍

𝜕2𝑄𝐹,𝑆

𝜕2𝑍

𝜕𝑄𝐹,𝑆𝜕𝑄𝑅,𝑆
𝜕2𝑍

𝜕𝑄𝐹,𝑆𝜕𝑄𝑅,𝑆

𝜕2𝑍

𝜕2𝑄𝑅,𝑆 ]
 
 
 
 

 

𝐻𝑠 =
1

𝑏𝑠 − 𝑎𝑠
 

[
 
 
 
 
 (−𝑃 − 𝐻′ + 𝜋 + 𝐷′) (∑𝐷𝑖 −∑𝐻𝑖 − (𝑇 − 𝜋) − 𝑃

𝐼

𝑖=1

𝐼

𝑖=1

)

(∑𝐷𝑖 −∑𝐻𝑖 − (𝑇 − 𝜋) − 𝑃

𝐼

𝑖=1

𝐼

𝑖=1

) 2 ∗ [(
1

2
(𝑃 + 𝑇) +∑(𝐷𝑖 −𝐻𝑖) (1 −

𝛾𝑖
2
)

𝐼

𝑖=1

) − 𝑃] (
1

𝜇
)
]
 
 
 
 
 

 

(19) 

 

In the above matrix we assume that 𝐻𝑠 = [
𝑎𝑠
′ 𝑏𝑠

′

𝑐𝑠
′ 𝑑𝑠

′]. As shown in Table 4 convexity holds true for 

all the three scenarios. Hence, an exact method can be used to solve the unconstrained problem in all 

the demand scenarios.  
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Table 4. The Hessian matrix under three demand scenarios 

𝒂𝒔
′𝐝𝒔

′ − 𝒃𝒔
′𝐜𝐬
′
 Hessian Matrix Scenario 

𝒂𝟏
′ 𝐝𝟏

′ − 𝒃𝟏
′ 𝐜𝟏

′ = 𝟏𝟑𝟏𝟓𝟔 𝐻1 =
1

55000 − 38000
[
−24760 −26803
−26803 −38048

] 
 Scenario 1 

(Good) 

𝒂𝟐
′ 𝐝𝟐

′ − 𝒃𝟐
′ 𝐜𝟐

′ = 𝟏𝟎𝟔𝟓𝟎 𝐻2 =
1

55000 − 32000
[
−24760 −26803
−26803 −38048

] 
Scenario 2 

(Fair) 

𝒂𝟑
′ 𝐝𝟑

′ − 𝒃𝟑
′ 𝐜𝟑

′ = 𝟏𝟎𝟔𝟓𝟎 𝐻3 =
1

55000 − 29000
[
−24760 −26803
−26803 −38048

] 
Scenario 3 

(Low) 

 
The constrained optimization problem shown in (17) is first transformed into an unconstrained 

nonlinear optimization problem for which the penalty function and the barrier method are employed. 

In this method, the constraints along with their violations are presented in Table 5.  

 

Table 5. Definition of constraint violation 

Violation Constraint  

𝑴𝒂𝒙(𝟎.∑𝑪𝒊(𝑸,𝑺)

𝑰

𝒊=𝟏

+ 𝑻(𝑸𝑭,𝑺) ≤ 𝑩) ∑𝐶𝑖(𝑄𝑅,𝑆)

𝐼

𝑖=1

+ 𝑇(𝑄𝐹,𝑆) ≤ 𝐵 

𝑴𝒂𝒙(𝟎. [𝑸𝑭,𝑺 + 𝝁(𝒙𝑺 −𝑸𝑭,𝑺)] ≤
𝑸𝑹,𝑺
𝜸𝒊

) [𝑄𝐹,𝑆 + 𝜇(𝑥𝑆 − 𝑄𝐹,𝑆)] ≤
𝑄𝑅,𝑆
𝛾𝑖

 

𝑴𝒂𝒙(𝟎.−𝑸𝑭,𝑺) 𝑄𝐹,𝑆 ≥ 0 

𝑴𝒂𝒙(𝟎.−𝑸𝑹,𝑺) 𝑄𝑅,𝑆 ≥ 0 

  

For the on-hand constrained optimization problem with two “less than or equal” constraints and 

two “greater than zero” bounds on the decision variables, the penalty function, 𝑝(𝑥), to be minimized 

is defined as 

 

𝑝(𝑥) =∑𝑣(𝑔𝑖(𝑥)) +∑𝑣(𝑥𝑗),

2

𝑗=1

2

𝑖=1

 (20) 

                                        
where 𝑣(𝑔𝑖(𝑥)) is considered for “less than or equal to” constraints and 𝑣(𝑥𝑗) is defined for the bounds 

on the decision variable 𝑥𝑗 
(in this case, 𝑄𝑅,𝑆 and 𝑄𝐹,𝑆 ). Then, the unconstrained minimization 

problem in (20) only assumes the penalty function as the objective function, where its least value is 

zero if a feasible point is obtained; that is if all constraints are satisfied (Bazaraa et al. [26]). 

 

After transforming the constrained optimization problem into an unconstrained optimization 

problem using the penalty function and the barrier function methods described above, the sequential 

unconstrained maximization technique (SUMT) is used to solve it (Bazaraa et al. [26]). In short, the 

following steps are taken to solve the problem: 

 

i. Select an initial value of 𝑟, a reduction rate of r, and an acceptable computational error. 

ii. Find a feasible point that satisfies all the constraints for which the penalty method can be 

used. 
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iii. Build the barrier function and its integration with the main objective function of the problem 

so that the problem is solved without constraints. 

iv. Use the feasible point as the starting point and solve the problem by an unconstrained 

nonlinear optimization approach such as the Newton-Raphson method. 

v. Monitor the computational error; in case it is less than a certain value, the algorithm stops. 

vi. Reduce r and monitor the error until the stopping condition is met. 

 

Given the constraints put forth for the model shown in (17), the barrier function becomes 

 

𝐵(𝑄𝐹,𝑆, 𝑄𝑅,𝑆, 𝑟) = 𝑟 [
1

𝐵 − ∑ 𝐶𝑖 (𝑄𝑅,𝑆)
𝐼
𝑖=1 − 𝑇(𝑄𝐹,𝑆)

+
1

𝑄𝑅,𝑆
𝛾𝑖

− 𝑄𝐹,𝑆 − 𝜇(𝑥𝑆 − 𝑄𝐹,𝑆)
+

1

𝑄𝐹,𝑆
+

1

𝑄𝑅,𝑆
] (21) 

  
Then, by integrating the constraints and the objective function, we will have to maximize the 

unconstrained non-linear optimization problem in (22) using the Newton-Raphson method, where the 

required derivatives are presented in Appendix B.  

 

max𝑍(𝑄, 𝑟) = (∅1,𝑆 + ∅2,𝑆 + ∅3,𝑆) − 𝑟 [
1

𝐵 − ∑ 𝐶𝑖(𝑄𝑅,𝑆)
𝐼
𝑖=1 − 𝑇(𝑄𝐹,𝑆)

+
1

𝑄𝑅,𝑆
𝛾𝑖

− 𝑄𝐹,𝑆 − 𝜇(𝑥𝑆 − 𝑄𝐹,𝑆)
+

1

𝑄𝐹,𝑆
+

1

𝑄𝑅,𝑆
] (22) 

 
This method starts with an initial reduction rate of r = 1 with the computational error of  𝜀 = 0.001 

The solution approach discussed above applies to a deterministic constrained non-linear optimization 

problem. However, as the problem modeled in (17) is stochastic, three common stochastic 

optimization procedures, namely “wait and see (WS),” “expected value (EV),” and “here and now” 

or “resource problem (RP)” are used in the following subsections [27].  
 

6.1.  Wait and See Method 

 

This method assumes that the uncertainty is replaced with certainty and that the actual values of 

the random parameters are known. Obviously, these assumptions do not hold in the real world because 

the future cannot be precisely predicted in most cases. In this approach, the problem is solved for 

each scenario to obtain 𝑍𝑊𝑆 as the expected value of the profit using 

 

𝑍𝑊𝑆 =∑𝑝𝑆(𝑍
∗𝑆),

𝑠∈𝑆

 (23) 

 

where 𝑍∗𝑆 is the optimum profit in scenario s  obtained by the SUMT algorithm. Tables 6-8 

contain the results in consecutive steps of the SUMT algorithm for good, fair, and low demand 

scenarios, respectively. In these tables, the 𝑍∗𝑆 value at the bottom of the last column shown in bold, 

which is very close to 𝑍(𝑄, 𝑟) represents the optimal profit. In addition, the optimal quantities of raw 

materials and products in each scenario are shown in the last rows of these tables. These figures lead 

to the quantities of raw materials to be purchased before the selling period in proportion to their 

consumption rates in Table 9. Moreover, the budget requirements are shown in Table 10, where the 

budget needed to purchase raw materials and to produce products as well as the total profit obtained 

under each scenario are shown. 
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  Table 6. Optimal profit obtained by the WS method for the good demand scenario 

Iteration 𝑟 Raw Material Products 𝑍(𝑄, 𝑟) 𝑍∗1 

1 1 14,444 21,217 10,836,705 10,844,884 

2 0.1 14,813 22,225 10,939,387 10,939,307 

3 0.01 14,814 22,232 10,939,049 10,939,041 

 

Table 7. Optimal profit obtained by the WS method for the fair demand scenario 

Iteration 𝑟 Raw Material Products 𝑍(𝑄, 𝑟) 𝑍∗2 

1 1 14,114 21,650 8,229,281 8,237,694 

2 0.1 14,126 21,687 8,238,877 8,239,867 

3 0.01 14,156 21,753 8,243,422 8,243,582 

4 0.001 14,173 21,798 8,246,034 8,246,062 

5 0.0001 14,182 21,824 8,247,482 8,247,487 

6 0.00001 14,189 21,842 8,248,472 8,248,473 

7 0.000001 14,190 21,845 8,248,626 8,248,626 

8 0.0000001 14,194 21,856 8,249,184 8,249,184 

 

Table 8. Optimal profit obtained by the WS method for the low demand scenario 

Iteration 𝑟 Raw Material Products 𝑍(𝑄, 𝑟) 𝑍∗3 

1 1 13,299 20,426 7,329,573 7,331,652 

2 0.1 13,308 20,435 7,331,920 7,332,128 

3 0.01 13,308 20,435 7,331,920 7,332,128 

 

Table 9. Optimal solution obtained using the WS method 

𝒊 Raw Material Unit 

Raw Materials Quantity 

Scenario 1 

(Good) 

Scenario 2 

(Fair) 

Scenario 3 

(Low) 

1 T phosphate Kg 4.00 3.8 3.6 

2 40% bulk cream Kg 542.47 519.4 487.0 

3 PBSS starch Kg 66.71 63.9 59.9 

4 Industrial zero fat milk Kg 3,346.09 3,203.9 3,003.8 

5 Gelatin powder Kg 40.02 38.3 35.9 

6 Pure salt Kg 36.02 34.5 32.3 

7 C-polar Tex 6748 Kg 26.68 25.5 24.0 

8 5 layer Peace 27.45 26.3 24.6 

9 
Punched aluminum foil 

116 mm 
Peace 14,824.07 14,194.3 13,307.7 

10 
Printed Poly-styrene 

116 mm cup 
Peace 14,824.07 14,194.3 13,307.7 

11 3.2% fat milk Kg 11,980.94 11,471.9 10,755.4 
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Table 9. Optimal solution obtained using the WS method 

𝒊 Raw Material Unit 

Raw Materials Quantity 

Scenario 1 

(Good) 

Scenario 2 

(Fair) 

Scenario 3 

(Low) 

12 
Termtex Latex 5625 

starch 
Kg 26.68 25.5 24.0 

13 
C-polar Tex 06716 

additive 
Kg 26.68 25.5 24.0 

 

Table 10. Budget consumed using the WS method 

𝒊 Raw Material Unit 

Raw Material Cost 

Scenario 1 

(Good) 

Scenario 2 

(Fair) 

Scenario 3 

(Low) 

1 T phosphate Kg 38.40 36.8 34 

2 40% bulk cream Kg 138,958.50 133,054.8 124,745 

3 PBSS starch Kg 31,279.52 29,950.6 28,080 

4 
Industrial zero fat 

milk 
Kg 3,776,394.99 3,615,953.3 3,390,117 

5 Gelatin powder Kg 26,982.92 25,836.5 24,223 

6 Pure salt Kg 218.15 208.9 196 

7 C-Polar Tex 6748 Kg 3,578.64 3,426.6 3,213 

8 5 layer Peace 599.88 574.4 539 

9 
Punched aluminum 

foil 116 mm 
Peace 4,952,297.80 4,741,897.4 4,445,739 

10 
Printed poly styrene 

116 mm cup 
Peace 22,400,875.15 21,449,164.9 20,109,543 

11 3.2% fat milk Kg 12,103,882.60 11,589,644.2 10,865.805 

12 
Termtex Latex 5625 

starch 
Kg 2,641.65 2,529.4 2,371 

13 
C-Polar Tex 06716 

additive 
Kg 2,881.80 2,759.4 2,587 

Consumed Budget for Raw Materials 43,440,629.98 41,595,037.16 38,997,192 

Consumed Budget for Products  99,910,608 98,220,864 91,834,890 

Total Consumed Budget 143,351,238 139,815,901 130,832,082 

Overall Profit 10,939,041 8,249,184 7,332,128 

  
In order to investigate the effect of demand prediction on the total profit obtained, realized actual 

demands are also considered to follow the good, fair, and low scenarios. In other words, the question 

“what happens to the profit in each scenario if good, fair, and low scenarios of the actual demand 

happen?” is answered here. As expected, the results shown in Table 11 indicate that the highest profits 

in all the scenarios are realized if the good scenario for the actual demand is realized. This 

investigation enables the newsvendor to estimate the profit reduction in case of fair and low demands 

so that she would be able to predict the demand using a better approach more precisely. Then, 

assuming an identical likelihood of the occurrence of the demand scenarios, i.e. 𝑝𝑠 = 1/3, the long-

term (expected) profit obtained using the WS method becomes 𝑍𝑊𝑆 = 8.839.234, based on (23). 
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Table 11. The effect of demand prediction on the total profit 

obtained using the WS method 

Scenario 
Realized Demand 

Good Fair Low 

Scenario 1 (Good) 10,939,041 8,258,900 7,451,800 

Scenario 2 (Fair) 10,789,000 8,249,184 7,395,700 

 

6.2.  Expected Value Method 

 

In most cases, finding an answer based on the explicit use of random parameters is difficult and 

time-consuming. Moreover, obtaining a complete information on the parameters being used is costly 

and sometimes impossible. Thus, it is occasionally preferred to use the expected value of a random 

parameter to obtain a simpler solution as a certain equivalent. The EV method employed in our work 

takes the mean of the random demand and inserts it in the optimization problem to find the optimal 

solution. In this method, the average of the lower (�̅�)  and the upper (�̅�) bound of the uniform 

distribution of the demand in the three equally likely scenarios are first obtained using (24): 

 

�̅� =
1

3
(29000 + 32000 + 38000) = 33000 

�̅� =
1

3
(50000 + 53000 + 55000) = 52667. 

(24) 

 

Then, the bounds are used in the SUMT algorithm to find the optimal solution (𝑍∗) iteratively. 

Table 12 contains the results for different iterations, where (𝑍∗) becomes 8,709,068 in the 7th 

iteration at the bottom of the table. In this case, the optimal solution obtained using the EV method is 

shown in Table 13. 

 

The budget requirement for the above solution is shown in Table 14, where the budget needed to 

purchase raw materials and to produce products as well as the total profit obtained are shown. Then, 

one should determine how much profit the newsvendor will gain if she uses the EV solution when 

the good, fair or low scenario is realized. To this aim, a similar approach employed for the WS method 

is taken here. The results are summarized in Table 15, where the long-term profit obtained using the 

EV method becomes 𝑍𝐸𝐸𝑉 = 8.712.700, based on (23).  

 

Table 12. Optimal profit obtained by the EV method 

Iteration 𝑟 Raw Material Products 𝑍(𝑄. 𝑟) (𝑍∗) 

1 1 14,074 21,720 6,689,445 8,698,326 

2 0.1 14,090 21,777 8,700,411 8,701,582 

3 0.01 14,112 21,835 8,704,587 8,704,776 

4 0.001 14,125 21,872 8,706,711 8,706,743 

5 0.0001 14,133 21,893 8,707,891 8,707,897 

6 1.00E-05 14,137 21,905 8,708,495 8,708,496 

7 1.00E-06 14,141 21,916 8,709,068 8,709,068 
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Table 13. Optimal solution of the EV method 

𝒊 Raw Material Unit 
Raw Materials 

Quantity  

1 T phosphate Kg 3.82 

2 40% bulk cream Kg 517.49 

3 PBSS starch Kg 63.64 

4 Industrial zero fat milk Kg 3,191.99 

5 Gelatin powder Kg 38.18 

6 Pure salt Kg 34.36 

7 C-Polar Tex 6748 Kg 25.45 

8 5 layer Peace 26.19 

9 Punched aluminum foil 116 mm Peace 14,141.36 

10 
Printed poly styrene 116 mm 

cup 
Peace 14,141.36 

11 3.2% fat milk Kg 11,429.17 

12 Termtex Latex 5625 starch Kg 25.45 

13 C-Polar Tex 06716 additive Kg 25.45 

 

Table 14. Budget consumed using the EV method 

𝒊 Raw Material Unit Raw Material Cost 

1 T phosphate Kg 36.63 

2 40% bulk cream Kg 132,558.92 

3 PBSS starch Kg 29,838.98 

4 Industrial zero fat milk Kg 3,602,477.23 

5 Gelatin powder Kg 25,740.25 

6 Pure salt Kg 208.10 

7 C-Polar Tex 6748 Kg 3,413.83 

8 5 layer Peace 572.25 

9 Punched aluminum foil 116 mm Peace 4,724,225.11 

10 
Printed poly styrene 116 mm 

cup 
Peace 21,369,227.20 

11 3.2% fat milk Kg 11,546,451.46 

12 Termtex Latex 5625 starch Kg 2,519.99 

13 C-Polar Tex 06716 additive Kg 2,749.08 

Consumed Budget for Raw Materials 41,440,019.02  

Consumed Budget for Products  98,490,504  

Total Consumed Budget 139,930,523  

Overall Profit 8,709,068 
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Table 15. Demand effect on the newsvendor profit based 

on EV 

Scenario EV 

Scenario 1 (Good) 10,909,000 

Scenario 2 (Fair) 8,253,000 

Scenario 3 (Low) 7,376,100 

EEVZ  8,712,700 

 

6.3. The Here and Now Method 

 

The here and now or the resource problem (RP) method offers a practical real-world approach to 

solve stochastic optimization problems. In this method, the feasible region of the problem is identical 

in all scenarios and the solution is treated as the real-world answer to the problem. The main drawback 

of this method is that when the problem becomes relatively large, it can be hardly solved. 

 

The optimization problem to be solved by the RP method for the model shown in (17) is: 

 

max𝑍 =
1

3
(∅1,1 + ∅2,1 + ∅3,1) +

1

3
(∅1,2 + ∅2,2 + ∅3,2) +

1

3
(∅1,3 + ∅2,3 + ∅3,3) 

s. t. 

(1)∑𝐶𝑖(𝑄𝑅) + (𝑇 + 𝑄𝐹) ≤ 𝐵

𝐼

𝑖=1

  

(2) [𝑄𝐹 + 𝜇(𝐸(𝑥1) − 𝑄𝐹)] ≤
𝑄𝑅
𝛾𝑖

 

(3) [𝑄𝐹 + 𝜇(𝐸(𝑥2) − 𝑄𝐹)] ≤
𝑄𝑅
𝛾𝑖

 

(4) [𝑄𝐹 + 𝜇(𝐸(𝑥3) − 𝑄𝐹)] ≤
𝑄𝑅
𝛾𝑖

 

𝑄𝐹 , 𝑄𝑅 > 0, 

(25) 

 

where 𝐸(𝑥𝑆), 𝑆 = 1, 2, 3 is the expected demand in 𝑠th scenario. Equation (25) is used to place all 

the scenarios into the recourse problem, i.e., all the scenarios are considered in one model. Besides, 

the objective function consists of three parts, each related to a scenario. Moreover, as the demand is 

a random variable, the constraints containing this variable repeat for each scenario. For instance, the 

second constraint in (17) involves the demand variable is repeated in (25).  

 
Solving the problem modeled in (25) using the SUMT algorithm results in the optimal profit as 

shown at the bottom of Table 16. 

 

Table 16. Optimal profit obtained using the RP method 

Iteration 𝑟 Raw Material Products  𝑍(𝑄. 𝑟) (𝑍∗) 

1 1 12,786 19,610 8,729,316 8,729,206 

2 0.1 12,796 19,610 8,730,416 8,730,416 
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Consequently, the optimal quantities of the raw materials based on their consumption rates are 

reported in Table 17. In addition, the budget required to purchase raw materials and to produce 

products as well the profit obtained are presented in Table 18. The results in Table 18 show that if the 

newsvendor decides to use the plan obtained by the RP method, her long-term profit will be equal to 
𝑍𝑅𝑃 = 8.730.416 units. 

 

Table 17. Optimal solution obtained by the RP method 

𝒊 Raw Material Unit Raw Materials Quantity 
 

1 T phosphate Kg 3.45 

2 40% bulk cream Kg 468.26 

3 PBSS starch Kg 57.58 

4 Industrial zero fat milk Kg 2,888.31 

5 Gelatin powder Kg 34.55 

6 Pure salt Kg 31.09 

7 C-Polar Tex 6748 Kg 23.03 

8 5 layer Peace 23.70 

9 Punched aluminum foil 116 mm Peace 12,796.00 

10 
Printed poly styrene 116 mm 

cup 
Peace 12,796.00 

11 3.2% fat milk Kg 10,341.84 

12 Termtex Latex 5625 starch Kg 23.03 

13 C-Polar Tex 06716 additive Kg 23.03 

 

Table 18. Budget requirement  using the RP method 

𝒊 Raw Material Unit Raw Materials Cost 

1 T phosphate Kg 33.14 

2 40% bulk cream Kg 119,947.73 

3 PBSS starch Kg 27,000.20 

4 Industrial zero fat milk Kg 3,259,750.19 

5 Gelatin powder Kg 23,291.41 

6 Pure salt Kg 188.31 

7 C-Polar Tex 6748 Kg 3,089.05 

8 5 layer Peace 517.81 

9 Punched aluminum foil 116 mm Peace 4,274,778.91 

10 
Printed poly styrene 116 mm 

cup 
Peace 19,336,233.94 

11 3.2% fat milk Kg 10,447,962.59 

12 Termtex Latex 5625 starch Kg 2,280.25 

13 C-polar Tex 06716 additive Kg 2,487.54 

Consumed Budget for Raw Materials 37,497,561.07  

Consumed Budget for Products  88,127,340  
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Table 18. Budget requirement  using the RP method 

𝒊 Raw Material Unit Raw Materials Cost 

Total Consumed Budget 125,624,901  

Overall Profit under each Scenario 8,730,416 

 

6.4. Significance of the Solutions Obtained 

 

The long-term profits obtained using the above-mentioned methods are summarized in Table 19.  

 

Table 19. Summary of stochastic model 

Method Profit 

Wait and See (𝒁𝑾𝑺) 8,839,234 

Expected Value (𝒁𝑬𝑬𝑽) 8,712,700 

Recourse Problem (𝒁𝑹𝑷) 8,730,416 

 
The significance of the results obtained using the three solution methods is tested in this section 

using the expected value of perfect information and the value of the stochastic solution. The expected 

value of perfect information (EVPI) shows to what extent information shortage can be effective. It is 

calculated by 

 

𝐸𝑉𝑃𝐼 = 𝑍𝑊𝑆 − 𝑍𝑅𝑃. (26) 

 

For the two-level single-period inventory control model of the present study, EVPI  is 

 

𝐸𝑉𝑃𝐼 = 𝑍𝑊𝑆 − 𝑍𝑅𝑃 = 8,839,234 − 8,730,416 = 108,818 (27) 

 

Note that a lower value of EVPI shows that the acquisition of information about the future does 

not entail significant impact, while a higher EVPI shows that ignoring the significance of perfect 

information will be very costly. In other words, this parameter shows how much can be spent on 

acquiring perfect information. As a result, if the newsvendor of the investigated problem neglects the 

uncertainty involved and procures raw materials and final product according to mean demand, she 

will be imposed a cost of 108,818 units in each period in the long run. 

 

The value of stochastic solution (VSS) is another useful measure defined by 

 

𝑉𝑆𝑆 = 𝑍𝑅𝑃 − 𝑍𝐸𝐸𝑉. (28) 
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It shows how much can be saved if the stochastic programming solution is used instead of a certain 

programming problem solution such as the expected value method. In other words, VSS represents 

the cost of neglecting uncertainty in decision making. A lower value of VSS indicates that the solution 

provided by the expected value method is a good approximation of the real solution of the problem. 

The value of VSS for the problem at hand is obtained to be 

 

𝑉𝑆𝑆 = 𝑍𝑅𝑃 − 𝑍𝐸𝐸𝑉 = 8,730,416 − 8,712,700 = 17,716 (29) 

 

This means that 17,716 units can be saved if the newsvendor uses the RP method instead of the 

EV method. 
 

7. Conclusions and Future Research 

 

A two-level single-period problem with budget constraint under three different demand scenarios 

was investigated. The newsvendor needs to prepare raw materials and products just before the selling 

period. Production is allowed during the period for those customers who can wait for their unsatisfied 

demands by transforming the prepared raw materials into products during the period. It was assumed 

that the demands of those customers who cannot wait are lost. Inventory control models were first 

developed for this problem based on three different states of demand to estimate the newsvendor’s 

profit in each state. Then, the budget constraints and the consumption rates of raw materials were 

taken into account assuming three demand scenarios of good, fair and low. It was next shown that the 

developed nonlinear optimization problem could be solved using an exact method. Thereafter, an 

initial feasible point was obtained using a penalty function method and then, the problem was 

converted to an unconstrained nonlinear optimization problem using a barrier method, based on which 

the initial feasible point iteratively turns to an optimal solution using the Newton-Raphson method. 

A real-world case study was presented to illustrate the proposed methodology. Based on some 

analysis carried out under various conditions, we showed how the newsvendor can learn the effect of 

demand prediction on her profit.  

 

The mathematical formulation proposed here can be easily extended and used for a multi-product 

single-period two-level newsvendor problem using a new index for each product in all the necessary 

parameters. However, the solution approach might be different. This will be considered in our future 

research. Moreover, while uncertainty was merely assumed for demand, investigating some other 

uncertainties for other parameters of the problem is left for future. In addition, analyzing the impact 

of non-conforming product returns on the expected profit obtained as well as price sensitivity analysis 

are other interesting topics for future studies. 
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Appendix A: First derivatives of the objective function with respect to the decision variables 

 

𝜕∅1
𝜕𝑄𝐹,𝑆

=

(

 
 
 

{𝑃(𝑄𝐹,𝑆) +∑𝐷𝑖(𝑄𝑅,𝑆) + 𝐷
′(𝑄𝐹,𝑆)

𝐼

𝑖=1

}

− {∑𝐶𝑖(𝑄𝑅,𝑆)

𝐼

𝑖=1

+ 2(𝑇 +∑𝐶𝑖

𝐼

𝑖=1

)𝑄𝐹,𝑆 +∑𝐻𝑖(𝑄𝑅,𝑆)

𝐼

𝑖=1

+𝐻′(𝑄𝐹,𝑆)}
)

 
 
 1

𝑏𝑠 − 𝑎𝑠
  

 

𝜕∅1
𝜕𝑄𝑅,𝑆

= 𝑄𝐹,𝑆∑(𝐷𝑖 − 𝐶𝑖 −𝐻𝑖)

𝐼

𝑖=1

1

𝑏𝑠 − 𝑎𝑠
 

 

𝜕∅2
𝜕𝑄𝐹,𝑆

=

(

 
 
 

𝑃 −
1

2
𝑃(𝜇) +∑𝐷𝑖

𝐼

𝑖=1

[𝛾𝑖(𝜇)
1

2
]

− {(𝑇 +∑𝐶𝑖

𝐼

𝑖=1

) − 𝑇(𝜇)
1

2
− 𝜋(1 − 𝜇)

1

2
+∑𝐻𝑖 [𝛾𝑖(𝜇)

1

2
]

𝐼

𝑖=1

}
)

 
 
 
(𝑄𝐹,𝑆 +

𝑄𝐹,𝑆
+

𝜇
)

1

𝑏𝑆 − 𝑎𝑆
 

+

{
 
 
 
 
 
 

 
 
 
 
 
 

{
 
 

 
 𝑃(𝑄𝐹,𝑆) + 𝑃(𝜇) (

1

2
(𝑄𝐹,𝑆 +

𝑄𝐹,𝑆
+

𝜇
) − 𝑄𝐹,𝑆) +

∑𝐷𝑖 [𝑄𝑅,𝑆 − 𝛾𝑖(𝜇) (
1

2
(𝑄𝐹,𝑆 +

𝑄𝐹,𝑆
+

𝜇
) − 𝑄𝐹,𝑆)]

𝐼

𝑖=1 }
 
 

 
 

−

{
 
 
 
 

 
 
 
 ∑𝐶𝑖(𝑄𝑅,𝑆) + (𝑇 +∑𝐶𝑖

𝐼

𝑖=1

)𝑄𝐹,𝑆 + 𝑇(𝜇) (
1

2
(𝑄𝐹,𝑆 +

𝑄𝐹,𝑆
+

𝜇
) − 𝑄𝐹,𝑆)

𝐼

𝑖=1

+𝜋(1 − 𝜇) (
1

2
(𝑄𝐹,𝑆 +

𝑄𝐹,𝑆
+

𝜇
) − 𝑄𝐹,𝑆)

+∑𝐻𝑖 [𝑄𝑅,𝑆 − 𝛾𝑖(𝜇) (
1

2
(𝑄𝐹,𝑆 +

𝑄𝐹,𝑆
+

𝜇
) − 𝑄𝐹,𝑆)]

𝐼

𝑖=1 }
 
 
 
 

 
 
 
 

}
 
 
 
 
 
 

 
 
 
 
 
 

1

𝑏𝑆 − 𝑎𝑆
− 
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(

 
 
 
 
 
 
 
 
{𝑃(𝑄𝐹,𝑆) + 𝑃(𝜇) (

1

2
(𝑄𝐹,𝑆) − 𝑄𝐹,𝑆) +∑𝐷𝑖 [𝑄𝑅,𝑆 − 𝛾𝑖(𝜇) (

1

2
(𝑄𝐹,𝑆) − 𝑄𝐹,𝑆)]

𝐼

𝑖=1

} −

{
 
 
 

 
 
 ∑𝐶𝑖(𝑄𝑅,𝑆) + (𝑇 +∑𝐶𝑖

𝐼

𝑖=1

)𝑄𝐹,𝑆 + 𝑇(𝜇) (
1

2
(𝑄𝐹,𝑆) − 𝑄𝐹,𝑆)

𝐼

𝑖=1

+𝜋(1 − 𝜇) (
1

2
(𝑄𝐹,𝑆) − 𝑄𝐹,𝑆)

+∑𝐻𝑖 [𝑄𝑅,𝑆 − 𝛾𝑖(𝜇) (
1

2
(𝑄𝐹,𝑆) − 𝑄𝐹,𝑆)]

𝐼

𝑖=1 }
 
 
 

 
 
 

)

 
 
 
 
 
 
 
 

1

𝑏𝑆 − 𝑎𝑆

−
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{𝑃 − 𝑃(𝜇) (

1

2
) +∑𝐷𝑖 [𝛾𝑖(𝜇) (

1

2
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𝐼

𝑖=1

} − {𝑇 + 𝛾𝑖∑𝐶𝑖

𝐼

𝑖=1

}

− {𝑇(𝜇) (
1

2
) + 𝜋(1 − 𝜇) (

1

2
) +∑𝐻𝑖 [𝛾𝑖(𝜇) (

1

2
)]

𝐼

𝑖=1

}
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𝑄𝐹,𝑆

1

𝑏𝑆 − 𝑎𝑆
 

𝜕∅2
𝜕𝑄𝑅,𝑆
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 𝑃(𝑄𝐹,𝑆) + 𝑃(𝜇) (

1

2
(𝑄𝐹,𝑆 +

𝑄𝐹,𝑆
+

𝜇
) − 𝑄𝐹,𝑆) +

∑𝐷𝑖 [𝑄𝑅,𝑆 − 𝛾𝑖(𝜇) (
1

2
(𝑄𝐹,𝑆 +

𝑄𝐹,𝑆
+

𝜇
) − 𝑄𝐹,𝑆)]

𝐼

𝑖=1 }
 
 

 
 

−
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 ∑𝐶𝑖(𝑄𝑅,𝑆) + (𝑇 +∑𝐶𝑖

𝐼

𝑖=1

)𝑄𝐹,𝑆 + 𝑇(𝜇) (
1

2
(𝑄𝐹,𝑆 +

𝑄𝐹,𝑆
+

𝜇
) − 𝑄𝐹,𝑆)

𝐼

𝑖=1

+𝜋(1 − 𝜇) (
1

2
(𝑄𝐹,𝑆 +

𝑄𝐹,𝑆
+

𝜇
) − 𝑄𝐹,𝑆)

+∑𝐻𝑖 [𝑄𝑅,𝑆 − 𝛾𝑖(𝜇) (
1

2
(𝑄𝐹,𝑆 +

𝑄𝐹,𝑆
+

𝜇
) − 𝑄𝐹,𝑆)]

𝐼

𝑖=1 }
 
 
 
 

 
 
 
 

)

 
 
 
 
 
 
 
 
 
 
 

(
1

𝜇
)

1

𝑏𝑆 − 𝑎𝑆
 

+

(

 
 
 
 
 
 

{𝑃(𝜇) (
1

2𝜇
) +∑𝐷𝑖 [1 − 𝛾𝑖(𝜇) (

1

2𝜇
)]

𝐼

𝑖=1

}

−

{
 
 

 
 ∑𝐶𝑖

𝐼

𝑖=1

+ 𝑇(𝜇) (
1

2𝜇
) +

𝜋(1 − 𝜇) (
1

2𝜇
) +∑𝐻𝑖 [1 − 𝛾𝑖(𝜇) (

1

2𝜇
)]

𝐼

𝑖=1 }
 
 

 
 

)

 
 
 
 
 
 

(𝑄𝐹,𝑆 +
𝑄𝐹,𝑆
+

𝜇
)

1

𝑏𝑆 − 𝑎𝑆
 

−({∑𝐷𝑖

𝐼

𝑖=1

} − {∑𝐶𝑖

𝐼

𝑖=1

+∑𝐻𝑖

𝐼

𝑖=1

}) (𝑄𝐹,𝑆)
1

𝑏𝑆 − 𝑎𝑆
 

  



78 Keramatpour, Niaki and Pasandideh 

 

 

𝜕∅3
𝜕𝑄𝐹,𝑆

= (𝑃 − 𝑇 −∑𝐶𝑖

𝐼

𝑖=1

+ 𝜋)
𝑏𝑆

𝑏𝑆 − 𝑎𝑆
− (𝑃 − 𝑇 −∑𝐶𝑖

𝐼

𝑖=1

+
1

2
𝜋)(𝑄𝐹,𝑆 +

𝑄𝐹,𝑆
+

𝜇
)

1

𝑏𝑆 − 𝑎𝑆
 

−

(

 

{𝑃(𝑄𝐹,𝑆) + 𝑃(𝑄𝐹,𝑆
+ )} −

∑𝐶𝑖

𝐼

𝑖=1

𝑄𝑅,𝑆 + (𝑇 +∑𝐶𝑖

𝐼

𝑖=1

)𝑄𝐹,𝑆 + 𝑇(𝑄𝐹,𝑆
+ ) + 𝜋 (

1

2
(𝑄𝐹,𝑆 +

𝑄𝐹,𝑆
+

𝜇
) − 𝑄𝐹,𝑆 − 𝑄𝐹,𝑆

+ )
)

 
1

𝑏𝑆 − 𝑎𝑆
 

 

𝜕∅3
𝜕𝑄𝑅,𝑆

= (𝑃 − {∑𝐶𝑖

𝐼

𝑖=1

+ 𝑇 − 𝜋})
𝑏𝑆

𝑏𝑆 − 𝑎𝑆
− (𝑃 − {𝑇 +∑𝐶𝑖

𝐼

𝑖=1

+
1

2𝜇
𝜋})(𝑄𝐹,𝑆 +

𝑄𝐹,𝑆
+

𝜇
)

1

𝑏𝑆 − 𝑎𝑆
 

−

(

 

{𝑃(𝑄𝐹,𝑆) + 𝑃(𝑄𝐹,𝑆
+ )}

− {∑𝐶𝑖

𝐼

𝑖=1

𝑄𝑅,𝑆 + (𝑇 +∑𝐶𝑖

𝐼

𝑖=1

)𝑄𝐹,𝑆 + 𝑇(𝑄𝐹,𝑆
+ ) + 𝜋 (

1

2
(𝑄𝐹,𝑆 +

𝑄𝐹,𝑆
+

𝜇
) − 𝑄𝐹,𝑆 −𝑄𝐹,𝑆

+ )}
)

 (
1

𝜇
)

1

𝑏𝑆 − 𝑎𝑆
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Appendix B.  Derivatives for the Barrier function 

𝜕𝐵

𝜕𝑄𝐹,𝑆
= 𝑟

[
 
 
 
 

𝑇

(𝐵 − ∑ 𝐶𝑖(𝑄𝑅,𝑆)
𝐼
𝑖=1 − 𝑇(𝑄𝐹,𝑆))

2 +
1 − 𝜇

(
𝑄𝑅,𝑆
𝛾
𝑖

− 𝑄𝐹,𝑆 − 𝜇(𝑥𝑆 − 𝑄𝐹,𝑆))

2 +
−1

(𝑄𝐹,𝑆)
2

]
 
 
 
 

 

 

𝜕𝐵

𝜕𝑄𝑅,𝑆
= 𝑟

[
 
 
 
 

∑ 𝐶𝑖
𝐼
𝑖=1

(𝐵 − ∑ 𝐶𝑖(𝑄𝑅,𝑆)
𝐼
𝑖=1 − 𝑇(𝑄𝐹,𝑆))

2
+

−
1
𝛾
𝑖

(
𝑄𝑅,𝑆
𝛾
𝑖

− 𝑄𝐹,𝑆 − 𝜇(𝑥𝑆 − 𝑄𝐹,𝑆))

2
+

−1

(𝑄𝑅,𝑆)
2

]
 
 
 
 

 

 

𝜕2𝐵

𝜕2𝑄𝐹,𝑆

= 𝑟

[
 
 
 
 
 
 
 

−2𝑇2(𝑄𝐹,𝑆 − 𝐵 − ∑ 𝐶𝑖(𝑄𝑅,𝑆)
𝐼
𝑖=1 )

(𝐵 − ∑ 𝐶𝑖(𝑄𝑅,𝑆)
𝐼
𝑖=1 − 𝑇(𝑄𝐹,𝑆))

4 +

−(1 − 𝜇) (2𝑄𝐹,𝑆 + 2𝜇(𝑄𝐹,𝑆) − 2𝜇
2(𝑥𝑠) − 2

1
𝛾
𝑖

𝑄𝑅,𝑆 + 2
1
𝛾
𝑖

𝑄𝑅,𝑆(𝜇) − 2𝜇(𝑥𝑠) + 4𝜇(𝑄𝐹,𝑆))

(
𝑄𝑅,𝑆
𝛾
𝑖

− 𝑄𝐹,𝑆 − 𝜇(𝑥𝑆 − 𝑄𝐹,𝑆))

4 +
2

(𝑄𝐹,𝑆)
3

]
 
 
 
 
 
 
 

 

 

𝜕2𝐵

𝜕2𝑄𝑅,𝑆
= 𝑟

[
 
 
 
 
 
 
 
 −∑ 𝐶𝑖 (2(∑ 𝐶𝑖

𝐼
𝑖=1 )

2
𝑄𝑅,𝑆 − 2𝐵∑ 𝐶𝑖

𝐼
𝑖=1 − 2𝑇(𝑄𝐹,𝑆)∑ 𝐶𝑖

𝐼
𝑖=1 )𝐼

𝑖=1

(𝐵 − ∑ 𝐶𝑖(𝑄𝑅,𝑆)
𝐼
𝑖=1 − 𝑇(𝑄𝐹,𝑆))

4 +

1
𝛾
𝑖

(2 (
1
𝛾
𝑖

)
2

𝑄𝑅,𝑆 − 2
1
𝛾
𝑖

𝑄
𝐹,𝑆
− 2

1
𝛾
𝑖

𝜇(𝑥𝑆 − 𝑄𝐹,𝑆))

(
𝑄𝑅,𝑆
𝛾
𝑖

− 𝑄𝐹,𝑆 − 𝜇(𝑥𝑆 − 𝑄𝐹,𝑆))

4 +
2

(𝑄𝑅,𝑆)
3

]
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𝜕2𝐵

𝜕𝑄𝐹,𝑆𝜕𝑄𝑅,𝑆
= 𝑟

[
 
 
 
 
 
 
 
 −𝑇 (2(∑ 𝐶𝑖

𝐼
𝑖=1 )

2
𝑄𝑅,𝑆 − 2𝐵∑ 𝐶𝑖

𝐼
𝑖=1 − 2𝑇(𝑄𝐹,𝑆)∑ 𝐶𝑖

𝐼
𝑖=1 )

(𝐵 − ∑ 𝐶𝑖(𝑄𝑅,𝑆)
𝐼
𝑖=1 − 𝑇(𝑄𝐹,𝑆))

4 +

−(1 − 𝜇) (2 (
1
𝛾
𝑖

)
2

𝑄𝑅,𝑆 − 2
1
𝛾
𝑖

𝑄𝐹,𝑆 − 2
1
𝛾
𝑖

𝜇(𝑥𝑆 − 𝑄𝐹,𝑆))

(
𝑄
𝑅,𝑆

𝛾
𝑖

− 𝑄𝐹,𝑆 − 𝜇(𝑥𝑆 − 𝑄𝐹,𝑆))

4

]
 
 
 
 
 
 
 
 

 

 

 


